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The homotopy analysis method (HAM) is sharpened to solve the Thomas–Fermi equation.
Some techniques are employed, including the use of asymptotic analysis to introduce
proper transformation, and the use of optimal initial guess and optimal auxiliary linear
operator to accelerate the convergence of homotopy approximations. The optimal conver-
gence-control parameters are determined by the minimum of the squared residual error.
As a result, the initial slop is provided with more-than-10-digit accuracy, which is far more
accurate than the results obtained by other authors using the same method. It demon-
strates the flexibility and power of the HAM equipped with these techniques.
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1. Introduction

One of the most important nonlinear ordinary differential equations that occurs in mathematical physics is the Thomas–
Fermi (TF) equation [1,2]
u00ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
u3ðxÞ

x

r
; ð1Þ
with the boundary conditions
uð0Þ ¼ 1; uðþ1Þ ¼ 0 ð2Þ
in common case. The above equation is defined in a semi-infinite interval which has a singularity at x ¼ 0 since u00ðxÞ ! 1 as
x! 0. Because of the importance of this problem in physics, it has been solved by different methods during the past century,
such as the differential analyzer [2], the d-expansion method [3,4], the variational approach [5], Adomian’s decomposition
method [6], the Chebyshev pseudospectral method [7], and the Hankel–Padé method [8,9]. All of these solutions give the
value of the initial slope u0ð0Þ, which plays an important role in determining the energy for a neutral atom. The best-known
result is given by Kobayashi [10], who employed the inward numerical integration and gave the initial slope
u0ð0Þ ¼ �1:5880710. So far, the most accurate value of u0ð0Þ is �1:588071022611375313, given by Fernández [9] using
Hankel–Padé method.

As an analytic tool to solve nonlinear differential equations, the homotopy analysis method (HAM) [11] has been success-
fully used to investigate a variety of nonlinear problems in science and engineering. The HAM enjoys great freedom in choos-
ing auxiliary linear operator and initial guess. In particular, it provides a convenient way to guarantee the convergence of
solution series. In most cases, the solution series given by the HAM converge quickly. However, when the HAM is applied
to the TF equation [11–15], which has a singularity at x ¼ 0, the approximations of the initial slope u0ð0Þ converge rather
slowly, as pointed out by Fernández [8,9]. We analyzed the reason of the slow convergence and found that the singular
. All rights reserved.
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property at x ¼ 0 is not automatically satisfied in the homotopy series solutions given by the previous HAM-based ap-
proaches. This finding inspires us to make proper transformations so that the singular property is satisfied automatically
in the series solution. We introduce the transformation through the analysis of asymptotic property about the singularity.
Furthermore, since the HAM provides us freedom to choose initial guess and auxiliary linear operator, we choose optimal
ones so as to improve the convergence rate of the solution series. Our current approximations converge much faster than
those given by the previous HAM approach [12], and especially we gain a very accurate value of the initial slope u0ð0Þ with
only 6:6� 10�12% relative error.

This paper is arranged as follows: In Section 2 we analyze the asymptotic property of the TF equation. Using this infor-
mation, the original equation is transformed into a new but more tractable one. In Section 3 the HAM is applied to gain
quickly convergent solution series. Section 4 gives the results in details, which show that the current approximations are
much better than the results given by the previous HAM-based approach. Some conclusions and discussions are made in
the final section.

2. Asymptotic property

Although the exact solution uðxÞ of the TF equation is unknown, we can get some valuable information by analyzing its
asymptotic properties as x! 0 and x! þ1. Many authors have discussed the asymptotic properties of the solution of TF
equation [16,17]. However, we recalculate some of these asymptotic properties to make the derivation of the transforma-
tions (4) and the extra boundary condition (8) easy to understand.

As x! 0, it holds from Eq. (1) that u00ðxÞ � 1=
ffiffiffi
x
p

, which gives
u0ðxÞ � 2
ffiffiffi
x
p
þ l; as x! 0;
where l ¼ u0ð0Þ is an unknown constant. Then, we have the asymptotic property
uðxÞ � 1þ lxþ 4
3

x3=2 þ � � � ; as x! 0: ð3Þ
So, from the asymptotic property u00ðxÞ � 1=
ffiffiffi
x
p

as x! 0, it is natural to introduce a new independent variable n ¼
ffiffiffi
x
p

. Be-
sides, considering the right-hand side term u3=2ðxÞ of Eq. (1), it is natural to define such a new dependent variable
w ¼

ffiffiffiffiffiffiffiffiffi
uðxÞ

p
. Thus, under the transformation
wðnÞ ¼
ffiffiffiffiffiffiffiffiffi
uðxÞ

p
; n ¼

ffiffiffi
x
p

; ð4Þ
the original Eq. (1) becomes
n wðnÞw00ðnÞ þw02ðnÞ½ � �wðnÞw0ðnÞ � 2n2w3ðnÞ ¼ 0; ð5Þ
subject to the boundary conditions
wð0Þ ¼ 1; wðþ1Þ ¼ 0: ð6Þ
Accordingly, the asymptotic property (3) becomes
wðnÞ � 1þ 1
2
ln2 þ 2

3
n3 þ � � � ; as n! 0: ð7Þ
In case of n! 0, according to the asymptotic property (7), wðnÞ does not contain the linear term n. Thus, we have one addi-
tional boundary condition
w0ð0Þ ¼ 0: ð8Þ
Note that there exist three boundary conditions now, but the governing Eq. (5) is only second-order. Differentiating both
sides of Eq. (5) with respect to n, we have
wðnÞw000ðnÞ þ 3w0ðnÞw00ðnÞ � 6nw2ðnÞw0ðnÞ � 4w3ðnÞ ¼ 0; ð9Þ
subject to the three boundary conditions
wð0Þ ¼ 1; w0ð0Þ ¼ 0; wðþ1Þ ¼ 0: ð10Þ
Note that the above third-order differential equation is equivalent to Eq. (1), but the singularity at origin is removed, as can
be seen from property (7). Hence, trying to find a proper transformation like (4) from asymptotic analysis is what we advised
to apply the HAM to nonlinear problems with singularity. If such transformation is found, then the series solution obtained
by the HAM would converge quickly. Otherwise, the series would converge slowly.

Now let us analyze the asymptotic property of solution at infinity. To change the domain from ½0;þ1� to ½1;þ1�, we make
the transformation [11]
t ¼ 1þ kn; gðtÞ ¼ wðnÞ; ð11Þ
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where k > 0 is a parameter to be chosen. Then, Eq. (9) becomes
k3gðtÞg000ðtÞ þ 3k3g0ðtÞg00ðtÞ � 6ðt � 1Þg2ðtÞg0ðtÞ � 4g3ðtÞ ¼ 0; ð12Þ
subject to the boundary conditions
gð1Þ ¼ 1;
dgðtÞ

dt

����
t¼1
¼ 0; gðþ1Þ ¼ 0: ð13Þ
Assume that gðtÞ ! 0 algebraically so that gðtÞ has the asymptotic property
gðtÞ � tk as at ! þ1; ð14Þ
where k < 0 is an unknown constant. Substituting it into Eq. (12) and balancing the main terms, we have
k ¼ �3: ð15Þ
Assume that gðtÞ can be expressed by the set of base functions
ft�mjm P 3g ð16Þ
in the form
gðtÞ ¼
Xþ1
m¼3

cmt�m; ð17Þ
where cm is a coefficient. This provides us with the so-called solution expression, which plays an important role in the frame
of the HAM. The solution of the original Eq. (1) reads
uðxÞ ¼ g2ð1þ k
ffiffiffi
x
p
Þ: ð18Þ
3. Mathematical formulation

To obey the solution expression (17), we choose the initial guess
g0ðtÞ ¼
4þ �

t3 þ�3� 2�
t4 þ �

t5 ; ð19Þ
where � is an unknown parameter to be determined later. Note that the initial guess g0ðtÞ satisfies the boundary conditions
(13). For different values of �, Eq. (19) corresponds to different initial guesses, and thus there should exist an optimal one
among them. To obey the solution expression (17), we choose the auxiliary linear operator
Lp½Uðt; qÞ� ¼ t3 @
3U
@t3 þ k1t2 @

2U
@t2 þ k2t

@U
@t
þ k3U ð20Þ
with the property
LpðtjÞ ¼ 0; j ¼ p;�3;�4; ð21Þ
where p is an integer more than �2, and the coefficients k1, k2 and k3 are determined by means of the property (21). Its in-
verse operator L�1

p has the property
L�1
p ðtnÞ ¼ tn

ðnþ 3Þðnþ 4Þðn� pÞ ; n 6 �5: ð22Þ
Note that (20) implies a family of linear operators. For different values of p, it corresponds to different auxiliary linear oper-
ators, and there should exist an optimal one among them in the frame of the HAM.

Based on Eq. (12), we define the nonlinear operator
N ½Uðt; qÞ� ¼ k3U
@3U
@t3 þ 3k3 @U

@t
@2U
@t2 � 6ðt � 1ÞU2 @U

@t
� 4U3: ð23Þ
Let c0 denote a nonzero auxiliary parameter, HðtÞ the auxiliary function, respectively. We construct the zeroth-order defor-
mation equation
ð1� qÞLp½Uðt; qÞ � g0ðtÞ� ¼ qc0HðtÞN ½Uðt; qÞ�; ð24Þ
subject to the boundary conditions
Uð1; qÞ ¼ 1;
dUðt; qÞ

dt

����
t¼1
¼ 0; Uðþ1; qÞ ¼ 0; ð25Þ
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where
Uðt; qÞ ¼
Xþ1
m¼0

gmðtÞqm ð26Þ
is the Maclaurin series, q 2 ½0;1� is an embedding parameter, and gmðtÞ is an unknown function to be determined.
Applying the derivative operator
Dmð�Þ ¼
1

m!

@m
�

@qm

����
q¼0

ð27Þ
to both sides of Eq. (24) and using its properties [18], we quickly gain the corresponding mth-order deformation equation
Lp½gkðtÞ � vkgk�1ðtÞ� ¼ c0HðtÞdk�1ðtÞ; ð28Þ
subject to the boundary conditions
gkð1Þ ¼ g0kð1Þ ¼ gkðþ1Þ ¼ 0; k P 1; ð29Þ
where
dk�1ðtÞ ¼
Xk�1

j¼0

k3ðgjðtÞg000k�1�jðtÞ þ 3g0jðtÞg00k�1�jðtÞÞ � 6ðt � 1Þg0k�1�jðtÞ
Xj

i¼0

gj�iðtÞgiðtÞ � 4gk�1�jðtÞ
Xj

i¼0

gj�iðtÞgiðtÞ
" #

ð30Þ
and
vm ¼
0; m 6 1;
1; m > 1:

�
ð31Þ
The solution of Eqs. (28) and (29) reads
gkðtÞ ¼ vkgk�1ðtÞ þ g�kðtÞ þ C1tp þ C2t�3 þ C3t�4; ð32Þ
where
g�kðtÞ ¼ L
�1
p ½c0HðtÞdk�1ðtÞ� ð33Þ
is a particular solution of Eq. (28), and
C1 ¼ 0; C2 ¼ �4g�kð1Þ �
dg�k
dt

����
t¼1
; C3 ¼ �C2 � g�kð1Þ ð34Þ
are determined by the boundary conditions (29).
Let HðtÞ be of the simplest form HðtÞ ¼ ctr, which might obey the solution expression (17). It is found that when r > 4 the

solution g�kðtÞ contains the term t ln t that disobeys the rule of solution expression (17). When r < 4 the coefficient of some
term in the approximation cannot be improved even if the order of approximation tends to infinity. Hence, we choose [11]
HðtÞ ¼ t4

k3 ð35Þ
to obey the solution expression (17). The denominator k3 in (35) comes from the coefficient of U @3U
@t3 in the nonlinear operator

(23).

Remark 1

(i) Using (21) and (22) we can directly write out the solution of Eqs. (28) and (29).
(ii) g1; g2; . . . can be gained one after the other.
(iii) The mth-order approximation of gðtÞ is given by
GmðtÞ ¼
Xm

k¼0

gkðtÞ: ð36Þ

(iv) To measure the accuracy of Gm, the squared residual error of Eq. (12) is defined by

Em ¼
Z þ1

1
½N ðGmðtÞÞ�2dt: ð37Þ

The smaller Em, the more accurate the mth-order approximation GmðtÞ.
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(v) The corresponding mth-order approximation of uðxÞ is given by

UmðxÞ ¼ G2
mð1þ k

ffiffiffi
x
p
Þ; ð38Þ

which automatically satisfies the asymptotic property of uðxÞ as x! 0 and x! þ1.

4. Results and analysis

As mentioned above, the squared residual error Em defined by (37) is a kind of measurement of the accuracy of the mth-
order approximation. However, the exact squared residual error Em is expensive to calculate when m is large. In practice, we
approximate Em by
Fig. 1.
approxi
Em �
XM

i¼0

½N ðGmðtÞÞ�2jt¼1þiDt ; ð39Þ
or
Em �
XM

i¼0

Xm�1

k¼0

dkðtÞ
 !2

������
t¼1þiDt

: ð40Þ
In this paper, Em is approximated by (40), M ¼ 200 and Dt ¼ 0:1 are used.
Note that we have four unknown auxiliary parameters, namely p, �; k and c0, whose optimal values are determined by the

minimum of Em, as suggested by Liao [19]. However, it is difficult to gain the exact optimal values because of expensive com-
putation. Hence, we determine these parameters as follows: first, setting c0 ¼ �1, we obtain p ¼ 15 by minimizing E2 which
is a function of p; � and k; secondly, setting p ¼ 15, we obtain k � 0:318 � 5=16 and � � �5:057 � �86=17 by minimizing E6

which is a function of k; � and c0; finally, setting p ¼ 15; k ¼ 5=16 and � ¼ �86=17, we obtain c0 � �1:382 � �11=8 by min-
imizing E12 which is a function of c0. In this way, we have the ‘‘optimal’’ auxiliary parameters
p ¼ 15; k ¼ 5=16; � ¼ �86=17; c0 ¼ �11=8; ð41Þ
x
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numerical result
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Comparison of the 30th-order HAM approximations with Kobayashi’s numerical result. Circles: numerical result; solid line: 30th-order homotopy
mation.
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and the corresponding auxiliary linear operator reads
Table 1
The com

Orde

10

20

30

40

50

60

Fern

Table 3
The ½30

x

0.1
0.5
1
10

20

50

100

Table 2
The ½m;

[m,m

[10,1

[20,2

[30,3

Fern
L15½Uðt; qÞ� ¼ t3 @
3U
@t3 � 5t2 @

2U
@t2 � 100t

@U
@t
� 180U: ð42Þ
Note that L15 can be regarded as an optimal auxiliary linear operator, so does (19) as an optimal initial guess.
It should be emphasized that the four auxiliary parameters p, �; k and c0 have no physical meanings, but they play an

important role in the convergence of the solution series. Thus, all of them can be regarded as convergence-control param-
eters. Using these optimal convergence-control parameters, the corresponding series converge quickly. The 30th-order
approximation agrees well with the numerical values given by Kobayashi [10], as shown in Fig. 1. As shown in Table 1,
the approximations given by the current optimal HAM approach converge much faster than those given by Liao’s early ap-
proach [12]: the 60th-order approximation of u0ð0Þ has 1.0% relative error for Liao’s early approach, but only 3:0� 10�9 rel-
ative error for the current approach. Furthermore, the Padé technique [20–21] is applied to accelerate the convergence of
u0ð0Þ, as shown in Table 2: the [30,30] Padé approximation of u0ð0Þ given by the current optimal HAM approach has only
6:6� 10�12 relative error. The [30,30] Padé approximations of uðxÞ and u0ðxÞ are compared with the numerical results [10]
in Table 3, where 0:0246029 means 0.0046029. Note that the singular property u00ð0Þ ¼ 1 is automatically satisfied in the
current approach, since u00ðxÞ � cx�1=2 as x tends to 0. However, this singular property is not automatically satisfied in Liao’s
early HAM-based approach [12]. This is the reason why the approximations of u0ð0Þ by Liao’s early approach converge slowly.

As the computational efficiency is concerned, the current approach takes less than 70 seconds to gain the 20th-order
approximation on a PC with an Intel Core 2 Quad 2.66GHz CPU. However, the CPU time increases quickly for higher-order
approximations. We have handled this problem by a kind of truncation technique, which projects the right hand side of the
deformation equation to its first few terms so as to reduce the number of terms in the series solution. We will describe this
technique in details somewhere else.
parison of u0ð0Þ.

r m Liao [12] Present work

u0ð0Þ Relative error (%) u0ð0Þ Relative error (%)

�1.50014 5.5 �1.5880699210 9:6� 10�5

�1.54093 3.0 �1.5880710127 5:9� 10�7

�1.55595 2.0 �1.5880710212 8:1� 10�8

�1.56373 1.5 �1.5880710222 2:1� 10�8

�1.56848 1.2 �1.5880710225 7:2� 10�9

�1.57168 1.0 �1.5880710226 3:0� 10�9

ández’s result [9]: �1.588071022611375313

;30� Padé approximations of uðxÞ and u0ðxÞ.

uðxÞ u0ðxÞ

Present Numerical [10] Present Numerical [10]

0.88170 0.88170 0.99535 0.99535
0.60699 0.60699 0.48941 0.48941
0.42401 0.42401 0.27399 0.27399
0.024314 0.024314 0:0246029 0:0246029

0:0257849 0:0257849 0:0364725 0:0364725

0:0363226 0:0363226 0:0432499 0:0432499

0:0310042 0:0310024 0:0527089 0:0527393

m� Padé approximations comparison of u0ð0Þ.

] Liao [12] Present work

u0ð0Þ Relative error (%) u0ð0Þ Relative error (%)

0] �1.51508 4.6 �1.5880710217246 5:6� 10�8

0] �1.58281 3:3� 10�1 �1.5880710226081 2:0� 10�10

0] �1.58606 1:3� 10�1 �1.5880710226113 6:6� 10�12

ández’s result [9]: �1.588071022611375313
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5. Conclusions

In this paper the HAM is sharpened to solve the famous TF equation and gives rather good approximation of the initial
slope. Using the asymptotic property of the TF equation, the original differential equation is transformed into an equivalent
but more tractable one so that the singular property is automatically satisfied in the solution series. Moreover, we choose the
optimal initial value and optimal auxiliary linear operator to accelerate the convergence of the solution series. As a result, the
initial slop of the TF function is obtained with more-than-10-digit accuracy, which is far more accurate than the approxima-
tions given by the early HAM approach. We believe that the techniques of the HAM presented in this work can be used in
general to handle other similar nonlinear problems with singularity so as to obtain much better approximations.
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