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Application of Homotopy. 
Analysis Method in Nonlinear 
Oscillations 
In this paper, we apply a new analytical technique for nonlinear problems, namely 
the Homotopy Analysis Method ( Liao 1992a), to give two-period formulas for oscilla- 
tions of conservative single-degree-of-freedom systems with odd nonlinearity. These 
two formulas are uniformly valid for any possible amplitudes of oscillation. Four 
examples are given to illustrate the validity of the two formulas. This paper also 
demonstrates the general validity and the great potential of the Homotopy Analysis 
Method. 

1 Introduction 
Nonlinear problems are more difficult to solve than linear 

ones. So far, the most widely applied nonlinear analytical tech- 
nique is the perturbation method (Nayfeh 1981, 1985; Nayfeh 
and Mook 1979). The perturbation method is valid in principle 
only for problems containing small (or large) parameters. Its 
basic idea is to transform, by means of small parameters, a 
nonlinear problem into an infinite number of linear subpro- 
blems, or a complicated linear problem into an infinite number 
of simpler ones. Therefore, the small parameter plays a very 
important role in the perturbation method. It determines not 
only the accuracy of the perturbation approximations but also 
the validity of the perturbation method itself. Therefore, it is 
the small parameter that greatly restricts the applications of the 
perturbation method. However, in both science and engineering, 
there exist many nonlinear problems which do not contain any 
small parameters, especially those with strong nonlinearity. 
Thus, it is necessary to develop and improve some nonlinear 
analytical techniques which are independent of small parame- 
ters. 

There exist some alternative analytical approaches, such as 
the harmonic balance method (Denman et al. 1964, 1965; Dela- 
motte 1993), the Krylov-Bogoliubov-Mitropolsky (KBM) 
method (Nayfeh 1981, 1985), and the weighted linearization 
method (Agrwal and Denman 1985), which sometimes may 
give analytical approximations even for large parameters. For 
nonlinear oscillators governed by 

u"+ F(u)  = 0, (1) 

the abovementioned techniques can produce first approxima- 
tions of the period of nonlinear oscillations, which are valid 
even for rather large amplitudes. However, it is usually rather 
difficult to apply them to produce higher oi~der approxima- 
tions. 

Liao (1992a) proposed a new analytical method called the 
Homotopy Analysis Method (HAM).  The HAM is in principle 
based on homotopy (Wang and Kao 1991 ) which is an im- 
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portant part of topology (Duld, 1972; Nash and Sen, 1983; 
Papy, 1970) so that it has a solid mathematical base. The basic 
ideas of the HAM are simple. First of all, one introduces an 
imbedding parameter to construct a homotopy and then analyzes 
it by the Taylor formula. Subsequently, by means of a linear 
property of homotopy described by Liao (1992a), one can trans- 
form a nonlinear problem into an infinite number of linear sub- 
problems, whether the nonlinear problem contains small param- 
eters or not. Therefore, unlike the perturbation method, the 
HAM is independent of small parameters and can overcome 
the restrictions of the perturbation methods. Liao (1992b, c, 
1995) and Liao and Chwang (1996) successfully applied the 
HAM to solve some simple nonlinear problems. These success- 
ful applications of the HAM demonstrate the validity and the 
great potential of the HAM, although the HAM is still in devel- 
opment and further improvements. 

For example, let us consider a periodic oscillator govemed 
by 

d2u z ( d u )  2 
(1 +4q2u 2 ) - ~ +  sou + 4q ~ -  u = 0 (K > 0 )  (2) 

with two initial conditions 

u(0) = A ,  u ' ( 0 )  = 0. (3) 

Liao (1995) applied the HAM to give two approximate formu- 
las of period T, 

T =  ~1 + 2q2A 2 (4) 
To 

and 

Z_ = ~5 + 9q2A 2 - ~/16 + 56q2A 2 + 53q4A 4 , (5) 
To 

where To = 27r/~/~. As pointed out by Liao (1995), the maxi- 
mum relative errors of the above two formulas with respect to 
the exact period 

T = 2 ~1 + 4q2A2E(k) (6) 
To 7r 

are, respectively, ten percent and three percent in the whole 
interval (qA ) 2 E [0, ¢¢), where k = 2qA/~l + 4qZA 2 and E(k)  
is the complete elliptic integral of the second kind. Although 
Eq. (2) is only a special case, the basic ideas of the HAM are 
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general so that it can be applied to solve more nonlinear oscilla- 
tion problems as shown in this paper. 

Let us further consider the free oscillation (undamped and 
unforced) of a conservative nonlinear system governed by 

u"(t) + F(u)  = 0 (7) 

with initial conditions 

u(0) =/3, u'(0)  = 0, (8) 

where u(t) is a dimensionless variable and F(u)  is an odd 
function of u so that there does not exist the so-called drift or 
steady-streaming. Suppose that u = 0 is a stable equilibrium 
point, i.e., a center of the oscillation. If F(u)  is a nonlinear 
function, both period T and frequency w = 27r/T of the corre- 
sponding oscillation are dependent upon the amplitude of oscil- 
lation/3. Usually, period T and frequency w are functions of/3. 

In this paper, we first apply the HAM to derive two general 
formulas for period T of a conservative single-degree-of-free- 
dom system with odd nonlinearity. Then, four examples are 
given to illustrate that these two period formulas are uniformly 
valid for any possible amplitudes of oscillation. 

2 Basic Ideas of the HAM and Main Derivation 
Following the approach of Liao (1992a), we construct a one- 

parameter family of equations 

02U(t; p)  
+ F[U( t ;p)]  

Ot 2 

= (1 - p s i - - w - -  + F[uo(t)] 

t E  [ 0 , ~ ) ,  p E [0, 1] (9) 

with initial conditions 

OU(t;p) 
U( t ;p)=/3 ,  0, for t = 0 ,  p E [ 0 , 1 ] ,  (10) 

Ot 

where p E [0, 1] is an imbedding parameter, u0(t), which 
satisfies Eq. (10), is an initial approximation of u(t) ;  and w0 
denotes the frequency of Uo(t). Note that U(t; p)  is now a 
function of both t and p so that its frequency, denoted by fi(p) 
in Eq. (9), is naturally dependent upon the value of p and 
moreover, ~(0)  = w0. 

At p = 0, we have obviously U(t; O) = uo(t). At p = 1, 
Eqs. (9) and (10) are exactly the same as Eqs. (7) and (8), 
respectively, so that U(t; 1 ) = u(t)  which implies fi(1) = w, 
where w is the frequency of u(t).  Note that u(t)  and its fre- 
quency w = 27r/T are exactly what we want to know. As the 
imbedding parameter p varies from zero to one, U(t; p)  varies 
continuously from Uo(t) to u(t) and fi(p) varies from wo to 
w. This kind of continuous variations is called deformation in 
topology. The continuous deformations of U(t; p )  and f~(p) 
are completely governed by Eqs. (9) and (10). Therefore, we 
call them the zeroth-order deformation equations, which repre- 
sent the changing or becoming process of U(t; p)  and f~(p). 
Here, let us emphasize that, in modem science, becoming is 
considered more important than being, as pointed out by Prigog- 
ine and Stengers (1984). 

Let 

1 
A(p) f~(P) '  p E [0, 1] (11) 

ko = 1/Wo and k = 1/w. Then, we have 

1 1 
Xo A(0) (12) 

Wo ~(0)  

and 

1 1 
X A(1). (13) 

w ~ ( 1 )  

Introducing a transformation 7 = ~(p ) t  in Eq. (9) and then 
dividing both sides by ~2(p),  we have 

02U(T; p) 
0T 2 

+ A2(p)F[U(T; p)] 

{ d2uo(~ - ) 
= (1 - p)  dT 2 - -  + k2F[uo(w)]} 

~- ~ [o, co), p E [o, 1] (14)  

with two initial conditions 

OU('r; p)  
U(T;p)  = fi, - - - -  O, for T = 0, p E [0, 1], (15) 

0q- 

which are also called the zeroth-order deformation equations. 
Here, we emphasize that neither small nor large parameters 

are necessary in constructing the zeroth-order deformation Eqs. 
(9) and (10), or (14) and (15). In fact, whether or not Eq. 
(7) contains small or large parameters is not important at all 
for the validity of the HAM, because the only assumption made 
on Eq. (7) is that F(u)  should be an odd function of u. We 
also emphasize that, the initial approximation uo(t) of u(t) ,  
together with its corresponding frequency Wo, can be selected 
with large freedom that provides us with a great potential to 
construct better or even the best zeroth-order deformation equa- 
tions. This kind of freedom is rather important. It would produce 
much bet/er approximations. 

Suppose that UO-; p) and A(p) have derivatives with respect 
to the imbedding variable p evaluated at p = 0: 

OkU('r; P) p=o u~ok~(T;p) -- Op k (k >- 1), (16) 

X ~ ' ( p ) -  0kA(P) = o 0 p  ~ (k--> 1), (17) 

which are called the kth-order deformation derivatives. Then, 
by Taylor's formula, we have 

U(T; p)  = Uo(T) + i 
U[0kl(T) 

k=l M pk, (18) 

A(p) = X0 + ~ RE°k] pk. (19) 
k=l T 'T 

Setting p = 1 and noting that UO-; 1) = u(7)  and A(I)  = X, 
we obtain 

u(r )  = Uo(~-) + ~', uL°~'(q-) (20) 
k = ,  k! 

and 

X~°~J (21) 
k = Xo + k-T ' 

k=l 

provided that the radii of convergence of series (18) and (19) 
are not less than 1. Note that (20) gives a relation between the 
initial approximation u0 (T) and solution u (~-); meanwhile, (21 ) 
provides a link between the initial approximation ko = 1/Wo 
and the reciprocal of the frequency k = l/w. Now, the key to 
the problem becomes how to solve these kth-order deformation 
derivatives Ulok~(T) and )~0k¿(k :> 1 ). For this purpose, we must 
first of all give equations governing uL0kl(T) and XEo~'(k --> 1 ). 
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Differentiating Eqs. (14) and (15) with respect to p and then 
setting p = 0, we have 

d2ut°U(r)+h~(dF )utoU(r) 
dr  - - - - - ~ - -  7ff .=u0(r) 

_ ,~d:Uo(~ ") } 
L d r  2 + ~rF[uo(r)] (22) 

with two initial conditions 

duE011 (7" ) 
u~oU(r) = 0, 0, for r = 0, (23) 

dr  

where 

cr = h~ + 2k0~ 11. (24) 

We call Eqs. (22) and (23) the first-order deformation equa- 
tions. In the same way, we can obtain all of the kth-order 
deformation equations governing ut0~l(r) and X~kl(k --> 2), 
which are similar in form to Eqs. (22) and (23) except the 
inhomogeneous terms. However, in this paper, we would like 
to show that even the first-order HAM approximation 

k ~ X0 + ~u 

can give satisfactory period formulas uniformly valid for any 
possible amplitudes of oscillation. Let us emphasize that the 
first-order deformation Eqs. (22) and (23) are linear with re- 
spect to the first-order deformation derivative uf0~l(r). In fact, 
every kth-order deformation equation is linear with respect to 
the corresponding kth-order deformation derivative (k ~ 1 ), as 
proved by Liao (1992a) in a rather general case. It means that 
every term utok~(r)(k --> 1) in (20) is governed by a linear 
equation. Therefore, by (20), the original nonlinear problem 
governed by Eqs. (7) and (8) can be transformed to an infinite 
number of linear subproblems about the kth-order deformation 
derivatives U~o~l(r)(k ~- 1). In the Introduction of this paper, 
we point out that the perturbation method uses the small parame- 
ter assumption to transform a nonlinear problem into an infinite 
number of linear subproblems. By means of the HAM, we also 
accomplish this kind of transformation but without using the 
small parameter assumption. Thus, the HAM is in principle 
different from the perturbation method. 

For conservative oscillations with an odd restoring force 
F(u) ,  there exists a periodic motion around the equilibrium 
point u = 0 with frequency aJ and amplitude/3. Therefore, a 
reasonable and the simplest initial approximation of u ( r )  is 

uo(r) = /3 cos ( r ) .  (25) 

Moreover, F ' ( u )  = dFIdu is clearly an even function of u. 
Thus, F(/3 cos r )  and F ' ( / 3  cos r )  can be expressed by 

F(,8 cos r )  = ~ A2k+l cos [(2k + 1)r]  (26) 
k=0 

and 

dF = __Bo + ~ B2k cos (2kr) ,  (27) 
~"u u=,o cos T 2 k=1 

respectively, where the coefficients A2k+l and B2k (k = 0, 1, 2, 
3 . . . .  ) are determined by 

A2k+ 1 1 f j "  = - F(/3 cos r )  cos [(2k + 1)r]dr  
7F 

( k = 0 ,  1 , 2 , 3  . . . .  ), (28) 

n2~ = 7 Jo ~ u  .=e . . . .  cos ( 2 k r ) d r  

( k =  0, 1, 2 ,3  . . . .  ). (29) 

Clearly, the solution UtoU(r) of Eq. (22) can be expressed by 
¢e 

u~U(r) = ~ C2k+l COS [(2k + 1) r ] .  (30) 
k=0 

Substituting (26), (27), and (30) into (22) and then equating 
the coefficients, we obtain a set of linear algebraic equations 
for unknown coefficients C2~+~ (k = 0, 1, 2, 3 . . . .  ), 

2 A3 2 
Ec = ~  - a 5 = ~ ( / 3 b -  ~ra), (31) 

where a = [A1 A3 A5 . . . i t ,  b = [1 0 0 0 . . .]r,  c = [C1 C3 C5 
. . . i t  are vectors and E is a matrix with elements e 0 defined by 

eu = B o + B 2 - 2 M  2, 

e12 = B2 + B4, 

e!3 = B4 + B6, 

e21 = B2 + B4, 

e22 = Bo + B6 - 18ko -2, 

e23 = B2 + Bs, 

e31 = B4 + B6 ,  

e32 = B2 + B8 ,  

e33 = Bo + Bio - 5 0 ~  2, 

. , .  

and so on. According to Cramer's theory, the solution of Eq. 
(31) can be expressed by 

2 
C2k-1 = [/3 det (Sk) -- c~ det (Rk)] 

X~ det (E)  

( k =  1 , 2 , 3  . . . .  ), (32) 

where both S~ = { s~ } and Rt = { r~ } are matrices with elements 

• eij when j ~ k, 

s ~ =  Lb~ when j = k ,  (33) 

and 

I e° when j : e k ,  
r ~  

t ai when j =  k. 
(34) 

Hence, according to (30), we have 

2 
ut°U(r) = ~ det (E)  k__~ [/3 det (Sk) 

- cr det (Rk)] cos [(2k - 1)r ] .  (35) 

From initial conditions (23), we obtain 

det (Sk) 
cr = I /3. (36) 

det (R~) l 
Lk=l J 

According to (24) and (36), cr is a function of both/3 and ko. 
If only n terms are used in (30), we have 
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where 

[ wo(/3, x0)]/3, 
J 

(37)  

W,(/3, ko) = i det (Sk), (38)  
k=l 

H,(/3, k0) = ~ det (RD.  (39) 
k=l 

Then, by Eqs. (21)  and (24) ,  we obtain the first-order approxi- 
mation of k as 

1 [ a(/3, ko)] (40) 
Xl = X0 "~- ~1] = 2 X0"q- ~ 0  J ' 

Note that in all of the above derivations, we do n o t  set a 
definite value to ko. As we have emphasized, the HAM provides 
us with large freedom to select the value of ko = l /w0. Obvi- 
ously, if we replace k0 by k~ in (40) ,  we will obtain a new 
approximation k2 which should be even better than hi. There- 
fore, expression (40) provides, in fact, such an iterative process 

1 [ cr(fl_, kk)] (41) 
X k + l = ~  Xk+ Xk J "  

In the limit as k tends to infinity and k = limk~+= kk, we have 

k 2 = or(/3, k) .  (42)  

Substituting (37) into (42) gives 

x2 = [W"(/3'X~]/3' L H,,(/3, (43)  

which is an algebraic equation about k 2. If only one term in 
Eq. (30)  is used (n = 1), we have 

so that 

W1(/3, k) = b, = 1, (44)  

H1(/3, k) = a,  = A1, (45)  

k = ~ / 2  ' (46) 

Therefore, we obtain the first approximate period formula 

T1 = 2 7 r ~ A  ~ • (47)  

l 

/ 

If two terms are used in (30) ,  we have 

k) = 1_ e12 + eH 1 
w~(/3, 

0 e22 e2~ 0 

= B0 - B2 - B4 + B6 - [8/)k 2 (48) 

and 

A3 el2 ~13 H2(/3, k) = At + ell 
622 e21 

= A i ( B o  - B2 - B4 + B6 - 18/k 2) 

+ A3(Bo  - B4 - 2/k2) .  (49)  

Substituting (48) and (49) into (43) we obtain 

k2 = /3(B0 - B2 - B4 "F B 6 --  ] 8 / ~  2)  

[Ai(Bo - B2 - B4 't- B6 - 1 8 / k  2) + m3(Bo - B4 - 2 / h a ) ]  ' 

which gives the second approximate period formula 

where 

(50) 

2~- 
= , (51)  

T2 ~ f ( / 3 )  ± ~ff2(/3) _ h(/3) 

f ( /3 )  = /3(B0 - B2 - B4 + B6) + 18Al + 2A3 
36/3 , (52)  

At(Bo - B2 - B4 + B6) + A3(Bo - B4) 
h(/3) = (53) 18/3 

The sign before ~/f2(/3) _ h(/3) should be determined by the 
cortdition limt~-.o (T1/T2) = 1. 

3 Some Applications 

3.1 Example 1: Duffing Equation. Let us first consider 
the well-known Duffing equation 

u " +  u + Eu 3 = 0  (54) 

with initial conditions u (0)  = /3 and u ' ( 0 )  = 0, where c is a 
known parameter and /3 > 0 is the amplitude of oscillation. 
Note that both e and/3 are not necessarily small. When e < 0, 
u = 0 is a center and u = ± ( - c )  -~/2 are saddle points so that 
there exist periodic oscillations around u = 0 only for ~/~-/3 
< 1. However, when e > 0, there always exist oscillations 
around the stable equilibrium point u = 0 for a n y  possible 
values of,f~/3 so that the corresponding amplitude of oscillation, 
/3, may be very large (0 -< /3 < +w) .  The exact period T of 
the Duffing Eq. (54)  is 

4 
T ~/1 + e/3 2 K(/z),  (55) 

where # = ~/½e/32/( 1 + e/32) and K(#)  is the complete elliptic 

integral of the first kind. Its first-order perturbation approxima- 
tion is 

27r 
- + 3 e/32, ~) . (56)  Tpert ( 1  

Since the restoring force is F ( U )  = u + eu  3, we have 

1 3 F(/3 cos "r) = /3 (1  + ~e/3 2) cos (~-) + Ze/3 cos (3~-), (57)  

( 3 ) 3  
d F  = 1 + ~ e / 3  2 + ~ e / 3  2cos(2~- ) .  (58)  
~ u = ¢ ~  cos (r) 

According to (28)  and (29) ,  we have 

3 2 A~ = /3(1 + ~e/3 ), (59)  

1 3 
A3 = ~e/3 , ( 6 0 )  

B o =  2 + 3e/32, (61)  

3 2 B2 = ~e/3 , (62)  

A2k+l = B 2 ~ = 0  (k ->  2).  (63)  
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Fig. 1 Comparison of the approximate periods with the exact one (ex- 
ample 1: ~ > O); Horizontal axis: . ~ / ~ ;  Vertical axis: ratio of approximate 
periods to the exact; Curve 1: Tpoa/T,,,¢t; Curve 2: T~/T,,xact; Curve 3: 
TJ Tex,~ 

Substituting (59) into (47) gives 

27r 
T, ~/1 + ~ e/32 (64) 

Moreover, according to (51) ,  we have 

247r 
T2 : (65) 

~/80 + 62e/32 + x/4096 + 5888c/3 z + 1684e2/3 4 

Here, we select the plus sign before the second square root to 
ensure lim,~2~o ( T~/T2) = 1. 

Comparisons of the approximate periods (56) ,  (64) ,  and 
(65) with the exact period (55) are shown in Fig. 1 for e > 0 
and Fig. 2 for e < 0, respectively. Clearly, formula (64) and 
especially (65) are more accurate than (56) and can give good 
a[~e[oximations of period T for both small and large values of 

/3. Note that, for e > 0, (64) and (65) give maximum 

1,00 

0.95 

0.90 2 

0.85 

0.80 

0.75 

1.20 

, , , , , ~ , , , i , r , , , , , , , i , , , , , ,  , , , i , , , , , , , , , i , , , , , , , , ,  I 
0,00 0.20 0.40 0.60 0.80 1,00 

Fig. 2 Comparison of the approximate periods with the exact one (ex- 
ample 1: ¢ < O); Horizontal axis: I ~  I/~1; Vertical axis: ratio of approximate 
periods to the exact; Curve 1: Tp=a/Tox,~t; Curve 2: Tl/Tmot; Curve 3: 
T21T~,,~t 

relative errors less than 2.2 percent and 0.2 percent, respectively. 
In fact, 

f f ; T ~  T = K ( 1 / ~ )  ~ 0.9783 (66) 

and 

1¢77~ 7 = 62 K(1/x/-2) ~-0 1.0016, (67) 

where K denotes the complete elliptic integral of the first kind. 
Note that the accuracy of (64) and (65) are not strongly depen- 
dent upon the values of V l %Lff because they are uniformly valid 
for any possible values of V I c I/3. Therefore, both (64) and (65) 
are valid for strongly nonlinear oscillations with large ampli- 
tudes. Finally, let us point out that the first approximations given 
by other alternative techniques such as the harmonic balance 
method may give the same result as (64).  However, when we 
apply the harmonic balance method to obtain a second-order 
approximation, we have to solve a cubic algebraic equation. 
Therefore, Eq. (65) is relatively simple and easy to use, because 
it involves only square roots. 

3.2 Example 2: Simple Pendulum Attached to a Rotat- 
ing Rigid Frame. As the second example we consider a sim- 
ple pendulum attached to a rotating rigid frame, governed by 

0" + Wo2(l - K cos 0) sin 0 = 0 (68) 

with two initial conditions 0(0) = fl and 0 ' ( 0 )  = 0, where 0 
< K < 1 is a constant and/3(0 -</3 < 7r) denotes the amplitude 
of oscillation. The exact period T of Eq. (68) is 

r = 4 f.2 d ~  

w 0 J o  ~/1 - #2s in  2~b~/1 - K + K#2(1 + sin 2~b) ' 

(69) 

where/z = sin (/3/2). Its first-order perturbation approximation 
is 

[16(1 - K) -- (1 -- 4t¢)/32] ' (70) 

Now, the restoring force is F(O) = co0z(1 - K cos 0) sin 0. 
Therefore, we have 

F(/3 cos -r) = w~ ~ (--1)k{2Jzk+l(/3) 
k-0 

- KJzk+l(2fl)} COS [(2k + 1 ) r ] ,  (71) 

F ' ( f l  cos r )  = co02[J0(/3) - t~Jo(2fl)] 

+ 2cv 2 ~ (-1)~[J2,( /3)  - KJ2k(2/3)] COS (2kr ) ,  (72) 
k=l 

where Jk(x) is the Bessel function of the first kind. Then, by 
(26),  (27),  (47),  and (51) we obtain 

T1 = 27r j 2  fl (73) 
~ 0  J l ( f l )  - KJ1(2/3) ' 

27r 1 
T2 = - -  , (74) 

Wo ~/Q(/3) + ~Q2(/3) - P(/3) 

where 

1 
Q(/3) = ~ {/3[Jo(fl) + J2(fl) - J4(/3) - -  J6(/3)] 

- K/3[J0(2/3) + ./2(2/3) - J4(2/3) - J6(2/3)] 
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Fig. 5 Comparison of the approximate periods with the exact one (ex- 
ample 2: K = 0.9); Horizontal axis: /~ (degree); Vertical axis: ratio of 
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Curve 3: T21To,,ot 

+ [ 1 8 J , ( # )  - 2 J 3 ( / 3 ) ]  

- K[9Ji(2/3) - ,/3(2/3)] }, (75) 

1 
P(/3) = ~-~ { [2J1(/3) - KJ~(2/3)][Jo(fl) + Jz(/3) - J4(/3) 

- J6(/3)] - K[2Jz(/3) - KJ,(2f l)][Jo(2fl)  

+ J 2 ( 2 / 3 ) -  J4(2/3) - J6(2/3)] - [2J3(/3) 

- -  KJ3(2/3)]([J0(/3) - J4(/3)] 

- K[Jo(2/3) - J4(2/3)])}.  (76) 

Comparisons of approximations (70) ,  (73),  and (74) with the 
exact period (69) are shown in Fig. 3 for K = 0.1, Fig. 4 for 
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Fig. 4 Comparison of the approximate periods with the exact one (ex- 
ample 2: K = 0.5); Horizontal axis: ~ (degree); Vertical axis: ratio of 
approximate periods to the exact; Curve 1: Tport/Tox,ot; Curve 2: TI/T~.,act; 
Curve 3: T21Toxa~t 

K = 0.5, and Fig. 5 for K = 0.9, respectively. Note that the 
perturbation result (70) gives good approximations only when 
both x and/3 are small. However, in contrast to the perturbation 
approximation, period formula (73) and especially (74) can 
give good approximations even for large values of /3  and K. 
Therefore, the two period formulas (73) and (74) are valid not 
only for strong nonlinearity (large •) but also for large-ampli- 
tude oscillations (large/3). Note that our results are not satisfac- 
tory if/3 is very close to 7r. This may be due to the fact that/3 
= 7r is an unstable equilibrium point, called the saddle point, 
where the corresponding motion is a circle. 

Note that alternative approaches, such as the harmonic bal- 
ance method, the KBM method, and the weighted linearization 
method, can give the same first approximation as (73).  How- 
ever, when applying the harmonic balance method to get the 
second or even higher approximations, we have to solve a set 
of transcendental equations. It seems difficult to obtain (74) by 
alternative approaches. 

3.3 Example  3: Oscil lations With Restoring Force F(u) 
= u / (1  + u2). As the third example, let us consider the 
following oscillation governed by 

t t  
u" + - -  0 (77) l + u  2 

with two initial conditions u (0) = fl and u ' ( 0 )  = 0. The exact 
period T o f  Eq. (77) is 

f l  ~ dt (78) 
T =  4 ~/ ln( l  +/32 ) - l n ( 1  + t 2) 

Its first-order perturbation approximation is 

27r 
TP err - -  3 (79) (1 - ~/32) 

Note that the restoring force is F ( u )  = u/(1 + u2). By (28),  
(29),  (47),  and (51) we obtain 

T 1 -  27r15-'. :~J~"- (80)  
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and 

where 

27r = , (81) 

G = 34_3,3 + ~_a2(2 + 3y) - ~o~4(16 - 293' + 73' 3) 

_ ~ a 6 ( 5 _  6y + y3), (82) 

8 2 H = -~a  {-43" 3 + a2(1 - 33' + 83' 3 - 8y 4) 

+ 4a4(5 - 123' + 63' 2 + 33' 3 - 23/4) 

+ 16a6(1 - 23' + 3'2)}, (83) 

and 

1 1 
(84) a = ~ ,  'Y ~/1 +/32" 

Comparisons of the perturbation approximation (79) and the 

lim Tl ~ ~/27r/3, (86) 
/3-~o 

lim T2 ~ ( 3 ~  
~'= ',j'77-2~ J/3" (87) 

It means that period T of Eq. (77) is equal to 27r for small- 
amplitude /3. However, for large-amplitude oscillations, T is 
approximately directly proportional to the amplitude of oscilla- 
tion/3. It seems difficult to obtain this qualitative conclusion 
directly from the exact expression (78). 

3.4 Example  4: Oscil lations With Restoring Force F(u) 
= ~ u  + ku " ( n  = 3, 5, 7 , . . . ) .  As the last example, let us 
consider a family of  nonlinear differential equations 

it" + O~U + 3"U n = O, 

(a  > 0 , 3 , > 0 ,  n = 3, 5 , 7  . . . .  ), (88)  

with two initial conditions 

u(0) =/3, u'(0) = 0. 

The co~esponding exact period T is 

(89) 

T = 4 f0 r/2 
a¢ 

(90) 

HAM approximations (80) and (81) with the exact period T 
are shown in Fig. 6. Clearly, the perturbation approximation 
(79) is valid only for small values of/3. It breaks down for 
large amplitudes of oscillation. However, the HAM approxima- 
tions (80) and (81) are valid for any possible amplitudes of 
oscillation. 

From (80) and (81) we have 

lim T1 = lim T2 = 27r (85)  

and 
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Fig, 6 Comparison of the approximate periods with the exact one (ex- 
ample 3); Horizontal axis:/~ (degree); Vertical axis: ratio of approximate 
periods to the exact; Curve 1: Tpon/Tm=t; Curve 2: T1/Tmct; Curve 3: 
Td Texaot 

From (28), (29), (47), and (51) we obtain two approximations 
of period T, 

2~ 
TI = , (91) 

a + \ 2 1 \ 2 /  O ( n + l )  

127r,/-~ 
(92) 

where 

//3\" @ = 20a/3 + 3 ' /~ i  [(12 + 24n)e(n + 1) \ z /  

+ ( 2 -  t4n)O(n + 3) + 2n®(n + 5 ) ] ,  (93) 

rI = 144a2/32 + 1443' ~ a/3[(12n - 2)®(n + 1) 

+ (1 - 7n)®(n + 3) + n O ( n  + 5)] 

} +n3"  ~ [ ® ( n + l ) O ( n + 5 ) - O 2 ( n + 3 ) ]  , (94) 

and 

F(n + 1) n! 

® ( n ) = F 2 ( 2 +  1 ) [ ( 2 ) ! ]  2 (95) 

Formulas (91) and (92) are valid for any possible amplitudes 
and give the maximum errors as the dimensionless amplitude 
3'/3 "-~ tends to infinity, as shown in Fig. 7, where 3 -< n -< 50. 
Note that, even for n = 19, the maximum error given by (92) 
is less than ten percent for amplitude/3 E [0, oo). All of these 
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illustrate that the validity of the HAM period formulas (47) 
and (51) for nonlinear oscillations does not strongly depend 
upon the form of the restoring forces. 

In this section we have applied the HAM period formulas 
(47) and (51) to four typical conservative single-degree-of- 
freedom oscillation systems. The restoring forces of these four 
oscillations are rather different. These examples illustrate that, 
unlike perturbation approximations, the HAM period formulas 
(47) and (51 ) are uniformly valid for any possible amplitudes 
of oscillation and can give satisfactory period approximations 
for oscillations with strong nonlinearity and large amplitudes. 
These four examples give us reasons to believe that the HAM 
period formulas (47) and (51) should be valid for many other 
nonlinear conservative oscillation systems with odd restoring 
forces. 

4 Discussion 
In this paper we have applied a new analytical technique, 

called the Homotopy Analysis Method (HAM),  to derive two 
period formulas (47) and (51) for conservative single-degree- 
of-freedom oscillation systems with odd nonlinearity. We have 
further applied these two general formulas to four examples to 
illustrate that, unlike perturbation approximations, these two 
formulas are uniformly valid for oscillations with any possible 
amplitudes and strong nonlinearity. In other words, the validity 
6f the two period formulas (47) and (51) is independent o f  
small parameters. This is because the HAM is in principle based 
on homotopy in topology without the assumption of small pa- 
rameters. Therefore, the validity of the HAM itself does not 
depend on the presence of small parameters. This point is very 
important, because the small-parameter assumption brings a lot 
of restrictions to the perturbation method. Therefore, the HAM 
can be applied to solve more nonlinear problems than the pertur- 
bation method, especially those which do not contain any small 
parameters. 

The basic ideas of the HAM are simple. Some homotopies 
are first constructed by introducing an imbedding parameter p 
E [0, 1] so that unknown functions, together with their periods 
in case of periodic motions, become also dependent upon this 
imbedding parameter. These homotopies, or deformations, gov- 
erned by the zeroth-order deformation equations, can be ex- 
pressed as Maclaurin series in p.  The most important point is 

that every term in this Maclaurin series, called the kth-order (k 
1 ) deformation derivatives at p = 0, is governed by a linear 

equation which can be solved easily. In this way, a nonlinear 
problem is transformed into an infinite number of linear subpro- 
blems. As pointed out by Liao (1992a), this kind of transforma- 
tion is the key to solve nonlinear problems. Note that the pertur- 
bation method relies on the small-parameter assumption to ac- 
complish this kind of transformation. Thus, the validity of the 
perturbation method itself and its approximate results are natu- 
rally dependent upon small parameters. However, unlike the 
perturbation method, the validity of the HAM and its approxi- 
mations are independent of small parameters, as shown in this 
paper. Moreover, the HAM provides us with great freedom to 
select initial approximations, and through iteration and limiting 
processes these initial approximations lead to uniformly valid 
satisfactory results. 

Note that the two period formulas (47) and (51) are uni- 
formly valid for the four different examples. We have also 
applied (47) and (51) to many other nonlinear conservative 
oscillations with odd nonlinearity and have found that in all 
the cases they can give satisfactory period approximations in 
significant parameter ranges. These successful applications of 
(47) and (51) give us confidence in believing that they should 
be valid for many other nonlinear conservative oscillations with 
odd nonlinear restoring forces. As a new attempt to develop a 
nonlinear analytical technique free from the small-parameter 
assumption, the HAM seems promising, although it needs fur- 
the E improvements and more applications. 

There are other techniques to obtain first approximations for 
the period of a conservative oscillator, such as the harmonic 
balance method, the KBM method, and the weighted lineariza- 
tion method. In most cases these alternative techniques give the 
same first approximations as (47). However, it is difficult to 
obtain the second or even higher-order approximations by 
means of these alternatives. For example, the harmonic balance 
method requires the solution of a set of nonlinear algebraic 
or even transcendental equations which usually have no exact 
analytical solutions and must be solved numerically. In compari- 
son with these alternative approaches to obtain the second ap- 
proximations, the new period formula (51) given by the HAM 
is both simple and general. It involves only square roots and is 
valid for any odd restoring forces F(u). 
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Finally, we would tike to point out that the perturbation 
method is still a useful tool, especially in cases where a proper 
small parameter is present. What we attempt to develop is a 
new nonlinear analytical technique in the absence of  small pa- 
rameters. This paper shows one step in this attempt and we  still 
have a long way to go. 
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