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Generally, it is difficult to obtain convergent chaotic solution in an arbitrarily given finite interval
of time. Some researchers even believe that all chaotic responses are simply numerical noise
and have nothing to do with solutions of differential equations. However, using 1200 CPUs of
the National Supercomputer TH-A1 at Tianjin and a parallel integration algorithm of the so-
called “Clean Numerical Simulation” (CNS) based on the 3500th-order Taylor expansion and
data in 4180-digit multiple precision, one can obtain reliable convergent chaotic solution of
the Lorenz equation in a rather long time interval [0, 10 000]. This supports Lorenz’s optimistic
viewpoint [Lorenz, 2008] that “numerical approximations can converge to a chaotic true solution
throughout any finite range of time”. It also supports Tucker’s proof [Tucker, 1999, 2002] for the
famous Smale’s 14th problem that the strange attractor of the Lorenz equation indeed exists.
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Using a digit computer, Lorenz [1963] found the
famous “butterfly effect” of “deterministic non-
periodic” solution of three-coupled ordinary differ-
ential equations, called the Lorenz equation today:
the so-called chaotic solutions are extremely sensi-
tive to initial conditions. This work was a milestone
in the field of nonlinear dynamics. Tucker [1999,
2002] further proved that the Lorenz equation sup-
ports a strange attractor. Tucker’s work is a great
breakthrough that provides a positive answer to the
Smale’s 14th problem [Smale, 1998].

However, it was practically difficult to obtain a
reliable numerical simulation of a chaotic dynamic
system in an arbitrarily given finite range of time,
because Lorenz [1989, 2006] further found that
chaotic solutions are sensitive not only to initial

conditions but also to numerical algorithms: differ-
ent numerical algorithms with different time-steps
may lead to completely different numerical results of
chaos. For example, chaotic numerical simulations
of the Lorenz equation given by different traditional
procedures were often repeatable only in a inter-
val of time less than 30 Lorenz time unit (LTU).
So, “computed” dynamic behaviors observed for a
finite time-step in some nonlinear discrete-time dif-
ference equations sometimes have nothing to do
with the “exact” solution of the original continuous-
time differential equations at all, as confirmed by
some other researchers [Li et al., 2001; Teixeira
et al., 2007]. This numerical phenomenon leads to
intense arguments [Yao & Hughes, 2008; Lorenz,
2008] about the reliability of numerical simulations

1450119-1

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

4.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
H

A
N

G
H

A
I 

JI
A

O
 T

O
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/0
7/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218127414501193
shijun
高亮

shijun
高亮

shijun
高亮

shijun
高亮



September 19, 2014 11:48 WSPC/S0218-1274 1450119

S. J. Liao

of chaotic dynamic systems. Some believed that “all
chaotic responses are simply numerical noise and
have nothing to do with the solutions of differen-
tial equations” [Yao & Hughes, 2008]. On the other
side, using double precision data and a few exam-
ples based on the 15th-order Taylor-series procedure
[Corliss & Chang, 1982; Barrio et al., 2005] with
decreasing time-step, Lorenz [2008] was optimistic
and believed that “numerical approximations can
converge to a chaotic true solution throughout
any finite range of time, although, if the range is
large, confirming the convergence can be utterly
impractical.”

Currently, using the arbitrary-order Taylor
series method (TSM) [Corliss & Chang, 1982;
Barrio et al., 2005] and arbitrary-precision data
[Oyanarte, 1990] together with a validation and ver-
ification check, Liao [2009, 2013, 2014] proposed
the method of the “Clean Numerical Simulation”
(CNS) to obtain reliable convergent chaotic solu-
tions in a long but finite time interval [0, T ]. Let
s(M,N) denote a numerical simulation of a nonlin-
ear dynamic system given by the CNS, where M
denotes the order of the TSM and N the number of
digit precision of data, respectively. Here, “conver-
gence” means that, for a given interval [0, T ] with
a properly chosen time-step ∆t, there exist a criti-
cal order M∗ of the TSM and a critical integer N∗
for digit precision such that all numerical simula-
tions s(M,N) given by the CNS are the same, i.e.
with negligible differences, as long as M > M∗ and
N > N∗. This is mainly because truncation error
and round-off error can be reduced to a required,
rather small level as long as M and N are large
enough. Unlike traditional numerical algorithms for
chaotic systems, the CNS searches for the critical
order M∗ of the TSM and the critical N∗ of digit-
precision for a given time interval [0, T ] and a chosen
time-step ∆t.

In 2009, using the CNS with the 400th-order
Taylor series method (TSM) and data in 800-digit
precision (by means of the computer algebra Math-
ematica with the time-step ∆t = 0.01), Liao [2009]
gained, for the first time, a reliable chaotic solution
of the Lorenz equation in a long time interval [0,
1000]. As reported by Liao [2009], for a given inter-
val [0, T ], one can obtain reliable convergent chaotic
simulations of the Lorenz equation by means of the
CNS with the Mth-order TMS and data in N -digit
precision, where M > M∗ ≈ T/3 and N > N∗ ≈
2T/5 in the case of ∆t = 0.01. Using the multiple

precision (MP) library [Oyanarte, 1990] and paral-
lel computation, Wang et al. [2011] confirmed the
reliability of Liao’s chaotic solution in [0,1000] and
gained a reliable chaotic result of the Lorenz equa-
tion in [0, 2500] by means of the CNS based on the
1000th-order TSM and data in 2100-digit precision
(with ∆t = 0.01). Recently, using 1200 CPUs of the
National Supercomputer TH-A1 and a parallel inte-
gration algorithm of the CNS based on the 3500th-
order Taylor expansion and data in the 4180-digit
multiple precision, Liao and Wang [2014] obtained
a reliable convergent chaotic solution of the Lorenz
equation in a rather long interval 0 ≤ t ≤ 10 000: its
reliability and convergence were further confirmed
by means of the CNS using the 3600th-order TSM
and the data in 4515-digit multiple precision. To
the best of my knowledge, this kind of reliable con-
vergent chaotic solution of the Lorenz equation in
such a long time interval has never been reported
before, which provides us a numerical benchmark of
reliable chaotic solutions of dynamic systems.

Recently, Kehlet and Logg [2013] gained a
reliable convergent chaotic solution of the Lorenz
equation on the time interval [0, 1000] using the
200th-order finite element method (FEM) and data
in 400-digits precision. Its reliability was confirmed
by means of the CNS with the 400th-order TSM
and data in 800-digit precision. Note that, unlike
the FEM approach of Kehlet and Logg [2013], the
CNS is a kind of finite difference method (FDM).
Therefore, reliable convergent chaotic results of the
Lorenz equation in a long time interval [0, 1000] can
indeed be obtained by the two completely different
numerical approaches! All of these support Lorenz’s
optimistic viewpoints: “numerical approximations
can converge to a chaotic true solution throughout
any finite range of time”.

Thus, “Smale’s 14th Problem” has a perfect
answer: the strange attractor of the Lorenz equation
not only exists [Tucker, 1999, 2002], but also can
be calculated accurately in practice [Liao & Wang,
2014].

Finally, it should be emphasized that the CNS
can provide results with so small numerical noises
that it can be used to investigate the propaga-
tion of micro-level physical uncertainty of some
chaotic dynamic systems [Liao, 2012, 2014]. Some
very accurate CNS results of a chaotic three-body
system suggest that the micro-level physical uncer-
tainty might be the origin of the macroscopic ran-
domness of the three-body system [Liao, 2014], say,
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the macroscopic uncertainty of a chaotic three-body
system might be excited by their inherent micro-
level physical uncertainty, without any other exter-
nal “disturbances” at all.
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