On collinear steady－state gravity waves with an infinite number of exact resonances

Cite as：Phys．Fluids 31， 122109 （2019）；https：／／doi．org／10．1063／1．5130638
Submitted： 08 October 2019 ．Accepted： 06 December 2019 ．Published Online： 26 December 2019
Xiaoyan Yang（楊小岩）（1），Jiyang Li（李季阳），and Shijun Liao（䉀世俊）（D）

ARTICLES YOU MAY BE INTERESTED IN

Aspect ratio studies on insect wings
Physics of Fluids 31， 121301 （2019）；https：／／doi．org／10．1063／1．5129191
Turbulent drag reduction by polymer additives：Fundamentals and recent advances
Physics of Fluids 31， 121302 （2019）；https：／／doi．org／10．1063／1．5129619
Up－down asymmetric exact solutions to the Navier－Stokes equations
Physics of Fluids 31， 123108 （2019）；https：／／doi．org／10．1063／1．5128370

On collinear steady－state gravity waves with an infinite number of exact resonances

Cite as：Phys．Fluids 31， 122109 （2019）；doi：10．1063／1．5130638
Submitted： 8 October 2019 • Accepted： 6 December 2019 •
Published Online： 26 December 2019

CrossMark

Xiaoyan Yang（楊小岩），${ }^{1}$（Diyang Li（李季阳），${ }^{1}$ and Shijun Liao（廖世俊）${ }^{1,2,3, a)}$（D）

AFFILIATIONS

${ }^{1}$ School of Naval Architecture，Ocean and Civil Engineering，Shanghai Jiao Tong University，Shanghai 200240，China
${ }^{2}$ State Key Laboratory of Ocean Engineering，Shanghai 200240，China
${ }^{3}$ School of Physics and Astronomy，Shanghai Jiao Tong University，Shanghai 200240，China
${ }^{\text {a）}}$ Electronic mail：sjliao＠sjtu．edu．cn．

Abstract

In this paper，we investigate the nonlinear interaction of two primary progressive waves traveling in the same／opposite direction．Without loss of generality，two cases are considered：waves traveling in the same direction and waves traveling in the opposite direction．There exist an infinite number of resonant wave components in each case，corresponding to an infinite number of singularities in mathematical terms． Resonant wave systems with an infinite number of singularities are rather difficult to solve by means of traditional analytic approaches such as perturbation methods．However，this mathematical obstacle is easily cleared by means of the homotopy analysis method（HAM）：the infinite number of singularities can be completely avoided by choosing an appropriate auxiliary linear operator in the frame of the HAM．In this way，we successfully gain steady－state systems with an infinite number of resonant components，consisting of the nonlinear interaction of the two primary waves traveling in the same／opposite direction．In physics，this indicates the general existence of so－called steady－state resonant waves，even in the case of an infinite number of resonant components．In mathematics，it illustrates the validity and potential of the HAM to be applied to rather complicated nonlinear problems that may have an infinite number of singularities．

Published under license by AIP Publishing．https：／／doi．org／10．1063／1．5130638

NOMENCLATURE

$c_{0} \quad$ convergence－control parameter
$f \quad$ expression defined by（13）
$g \quad$ acceleration due to gravity
$H_{s} \quad$ wave steepness
$\boldsymbol{k}_{0} \quad$ wavenumber of the resonant wave
$\boldsymbol{k}_{0, \iota} \quad$ wavenumber of the t th resonant wave
$\boldsymbol{k}_{1} \quad$ wavenumber of the first primary wave
$\boldsymbol{k}_{2} \quad$ wavenumber of the second primary wave
$k_{d} \quad$ wavenumber corresponding to the dominant frequency
$\overline{\boldsymbol{k}}_{i} \quad$ wavenumber of the unperturbed wave
$\boldsymbol{k}_{i}^{\prime} \quad$ wavenumber of the perturbed wave
（ k_{p}, k_{q} ）wavevector of perturbation
$k_{J K} \quad$ wavenumber depending on J and K
$\kappa_{J K} \quad$ expression in（70）
q embedding parameter
R
S_{m}
t
ξ_{i}
φ
φ_{0}
φ_{m}
φ_{1}^{*}
$\Psi_{m_{1}, m_{2}}$
$\bar{\varphi}$
φ^{\prime}
Φ
η
η_{0}
η_{m}
$\eta_{\text {max }}$
$\eta_{\text {min }}$
$\eta_{\text {max }}^{\prime}$
$\bar{\eta}$
$\bar{S}_{m} \quad$ term in high－order deformation equation（26）
term in high－order deformation equation（26） time
variable in the coordinate system $\left(\xi_{1}, \xi_{2}, z\right)$
velocity potential
initial guess of φ
m－order solution of φ
special solution of φ_{1}
expression in φ
velocity potential of the unperturbed wave velocity potential of the perturbed wave φ in the coordinate system $\left(\xi_{1}, \xi_{2}, z ; q\right)$ free－surface elevation initial guess of η m－order solution of η maximum elevation of the nonlinear waves minimum elevation of the nonlinear waves maximum elevation of the linear waves free－surface elevation of the unperturbed wave

η^{\prime}	free-surface elevation of the perturbed wave
ζ	η in the coordinate system $\left(\xi_{1}, \xi_{2} ; q\right)$
$a_{m_{1}, m_{2}}$	coefficient in the solution expression of φ
$b_{m_{1}, m_{2}}$	coefficient in the solution expression of η
a^{*}	coefficient of $\Psi_{1,0}$ in φ_{1}
b^{*}	coefficient of $\Psi_{0,1}$ in φ_{1}
$\bar{b}_{m_{1}, m_{2}}$	coefficient in (59)
$\bar{d}_{m_{1}, m_{2}}$	coefficient in (64)
ω_{0}	linear frequency of the resonant wave
$\omega_{0, \iota}$	linear frequency of the t th resonant wave
ω_{1}	linear frequency of the first primary wave
ω_{2}	linear frequency of the second primary wave
$\mathrm{d} \omega_{l}$	frequency mismatch of the t th resonant wave
$\bar{\omega}$	linear frequency of the unperturbed wave
ω^{\prime}	linear frequency of the perturbed wave
σ	frequency of the perturbation
σ_{i}	actual frequency of the primary wave
Λ_{i}	σ_{i} with q
$\sigma_{i, m}$	m-order solution of σ_{i}
ϵ_{i}	dimensionless frequency of the primary wave
\mathcal{N}_{1}	nonlinear operator defined by (10)
\mathcal{N}_{2}	nonlinear operator defined by (11)
\mathcal{L}	auxiliary linear operator
\mathcal{L}_{0}	linear operator corresponding to the linear parts of (10)
Δ_{m}^{φ}	term in high-order deformation equation (26)
Δ_{m}^{η}	term in high-order deformation equation (28)
χ_{m}	$\chi_{1}=0$ and $\chi_{m}=1$ for $m>1$
γ_{m}	unknown introduced in φ_{m}
Π	sum of the squared amplitude of all components
Π_{0}	sum of the squared amplitude of two primary components
μ_{i}	piecewise function in \mathcal{L}
$\lambda_{m_{1}, m_{2}}^{i}$	eigenvalue associated with \mathcal{L}_{0} or \mathcal{L}

I. INTRODUCTION

When studying the nonlinear interaction of water waves by means of the traditional perturbation method, singularities may be encountered in the calculation process, and these are difficult to deal with mathematically. For example, when the criterion for wave resonance,

$$
\begin{align*}
& 2 \boldsymbol{k}_{1}-\boldsymbol{k}_{2}=\boldsymbol{k}_{0} \tag{1a}\\
& 2 \omega_{1}-\omega_{2}=\omega_{0} \tag{1b}
\end{align*}
$$

is exactly satisfied, where \boldsymbol{k}_{i} is the wavenumber and ω_{i} is the related linear wave frequency, the nonlinear interaction of four gravity waves in deep water contains one singularity that corresponds to the resonant mode at the third order. ${ }^{1-3}$ For the so-called steadystate resonant waves whose wave spectrum does not change with time, perturbation methods fail because of singularities in the transfer function, as pointed out by Madsen and Fuhrman. ${ }^{4}$ For shortcrested waves, there are two difficulties in obtaining their profile, as identified by Okamura. ${ }^{5}$ The first is that the radius of convergence is much smaller than the maximum wave steepness; the second is associated with the division by zero due to harmonic resonance. The nonlinear interaction of double cnoidal waves governed by the Korteweg-de Vries (KdV) equation contains an infinite number
of singularities when using the perturbation method. ${ }^{6,7}$ In dealing with these singularities, one must add terms with to-be-determined coefficients for each singularity, which makes the calculation process cumbersome and complicated. Additionally, as the amplitude increases, the accuracy of the Stokes series deteriorates to become effectively useless, even with Padé improvement, as noted by Boyd. ${ }^{8,9}$ Moreover, resonance phenomena such as Bragg resonance, capillary-gravity wave resonance, and acoustic-gravity wave resonance all contain singularity problems. ${ }^{10-13}$

The above-mentioned difficulties/restrictions can be overcome by means of the homotopy analysis method (HAM), ${ }^{14-17}$ an analytic technique for highly nonlinear problems that has been successfully applied in areas such as boundary-layer flows, ${ }^{18,19}$ American put options in finance,,${ }^{20-22}$ nonlinear water waves, ${ }^{23-29}$ and von Kármán circular plates. ${ }^{30,31}$ The HAM has some obvious advantages. First, unlike perturbation methods, the HAM does not depend upon any small/large physical parameters. Different from all other analytic approximation methods, the HAM guarantees the convergence of the series solution by choosing a proper value of the so-called convergence-control parameter c_{0}. In addition, the HAM provides great freedom to select an auxiliary linear operator and the initial condition. Using this freedom, the secular terms corresponding to the singularities can be easily avoided by choosing an appropriate auxiliary linear operator. For example, Liao ${ }^{23}$ reconsidered the nonlinear interactions between pairs of intersecting wave trains in deep water that exactly satisfy the resonance criterion (1a) and (1b), and gained, for the first time, a convergent solution of the steady-state resonant waves by means of the HAM, which was not possible using perturbation methods. Xu et al. ${ }^{24}$ and Liu and Liao ${ }^{25}$ extended the work of Liao ${ }^{23}$ from a single quartet in deep water to more complicated cases in infinite and finite water depths. Liao et al. ${ }^{26}$ further applied the HAM to solve a gravity wave problem in deep water with a small divisor caused by a single near-resonant term, and this was extended by Liu et al. ${ }^{27}$ to steady-state wave groups with multiple near-resonances. The near-resonance criteria are

$$
\begin{gather*}
m_{\iota} \boldsymbol{k}_{1}+n_{l} \boldsymbol{k}_{2}=\boldsymbol{k}_{0, \iota} \tag{2a}\\
m_{\iota} \omega_{1}+n_{\iota} \omega_{2}=\omega_{0, l}+\mathrm{d} \omega_{\iota}, \tag{2b}
\end{gather*}
$$

where $\iota=1,2, \ldots, l, \boldsymbol{k}_{1}$ and \boldsymbol{k}_{2} are the wavenumbers of the two primary components, and $\mathrm{d} \omega_{l}$ is a small real number that represents the angular frequency mismatch of the t th resonant component. The l nearly resonant components correspond to l small divisors in the calculation process. For the nonlinear interaction of double cnoidal waves governed by the KdV equation, Xu et al. ${ }^{32}$ overcame the difficulties of singularities in a convenient way by choosing an auxiliary linear operator which contains an irrational number in the framework of the HAM.

For the nonlinear interaction of collinear waves, in addition to the research of Haupt and Boyd ${ }^{6,7}$ on the nonlinear interaction of double cnoidal waves governed by the KdV equation, Sharma and Dean ${ }^{33}$ derived a second-order solution for bichromatic bidirectional water waves. Zhang and Chen ${ }^{34}$ provided a third-order analytical solution for the interactions among three collinear deepwater wave components. Madsen and Fuhrman ${ }^{35}$ then derived a third-order solution for dichromatic bidirectional water waves in finite depths. Fully nonlinear bichromatic waves traveling in the
same direction in deep water were investigated by Lin et al., ${ }^{36}$ who used the HAM to obtain convergent solutions. Liu et al. ${ }^{37}$ extended this work from infinite water to finite depths. Recently, Liu et al. ${ }^{38}$ obtained convergent high-order solutions for nonlinear bichromatic waves with finite wave amplitudes in deep water. Multiple steadystate near-resonances corresponding to multiple small divisors were considered in the wave system. For two primary waves traveling in opposite directions, the most researched problem concerns nonlinear standing waves. Standing waves of the finite amplitude in infinite water depths were first investigated by Rayleigh, ${ }^{39}$ who calculated a perturbation series based on the wave amplitude to third order. After Rayleigh's work, Penney and Price ${ }^{40}$ derived a fifth-order approximation for the wave amplitude by means of a successive expansion method. Since then, Aoki, ${ }^{41}$ Tabjbakhsh and Keller, ${ }^{42}$ Schwartz and Whitney, ${ }^{43}$ and Okamura, ${ }^{5}$ among others, have made considerable progress on nonlinear standing waves, albeit mostly using numerical methods.

The objective of this paper is to investigate nonlinear steadystate wave groups in deep water with an infinite number of resonances that satisfy the resonance criteria when l tends to infinity under the near-resonance criteria (2a) and (2b). In the present paper, we study the nonlinear interaction of two collinear traveling waves. An infinite number of singularities associated with an infinite number of resonant components are successfully handled by means of the HAM. Standing waves are simply special cases of two progressive waves traveling in the opposite direction with the same wavelength. We will illustrate that, by choosing an appropriate auxiliary linear operator in the HAM framework, the infinite number of singularities can be conveniently avoided. Additionally, as the nonlinearity increases, one more wave component is added to the initial nontrivial component, as the HAM provides us with this freedom. In this way, we can successfully obtain convergent solutions for steady-state collinear wave groups, even with rather high wave steepness.

The structure of the paper is as follows. The mathematical formulas in the HAM framework are described in Sec. II. Convergent results for steady-state resonant collinear waves with different values of wave steepness and their energy distributions and wave profiles are presented in Sec. III. The conclusions to this study and a discussion of our results are given in Sec. IV.

II. MATHEMATICAL FORMULAS

A. Governing equations

Let us consider the nonlinear interaction of two trains of progressive gravity waves traveling on the same line in water of infinite depth. A Cartesian coordinate system is adopted, with the x-axis and y-axis located on the mean water plane and the z-axis pointing vertically upward. Under the assumption of an inviscid and incompressible fluid, and without surface tension, the governing equations read

$$
\begin{equation*}
\nabla^{2} \varphi=0,-\infty \leq z \leq \eta(x, y, t), \quad(x, y) \in \mathbb{R}^{2} \tag{3}
\end{equation*}
$$

$\frac{\partial^{2} \varphi}{\partial t^{2}}+g \frac{\partial \varphi}{\partial z}+\frac{\partial|\nabla \varphi|^{2}}{\partial t}+\nabla \varphi \cdot \nabla\left(\frac{1}{2}|\nabla \varphi|^{2}\right)=0$, on $z=\eta(x, y, t)$,

$$
\begin{equation*}
g \eta+\frac{\partial \varphi}{\partial t}+\frac{1}{2}|\nabla \varphi|^{2}=0, \quad \text { on } z=\eta(x, y, t) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{z \rightarrow-\infty} \frac{\partial \varphi}{\partial z}=0 \tag{6}
\end{equation*}
$$

where φ denotes the velocity potential, η is the free-surface elevation, g is the acceleration due to gravity, and t is the time, respectively.

Consider a steady-state wave system in deep water consisting of two progressive waves, with \boldsymbol{k}_{i} denoting the wavenumber and σ_{i} the actual wave frequency. In the present paper, we assume that $\sigma_{i}>0$. Due to the nonlinearity, the actual wave frequency σ_{i} is different from the linear frequency $\omega_{i}=\sqrt{g\left|\boldsymbol{k}_{i}\right|}$ and depends upon the wave amplitudes. Write

$$
\begin{equation*}
\epsilon_{i}=\frac{\sigma_{i}}{\omega_{i}}, \quad i=1,2, \tag{7}
\end{equation*}
$$

where the value of ϵ_{i} is slightly different from 1 . In this paper, the actual wave frequency σ_{i} is unknown and needs to be determined. Then, we define the variables

$$
\begin{equation*}
\xi_{i}=\boldsymbol{k}_{i} \cdot \boldsymbol{r}-\sigma_{i} \cdot t, \quad i=1,2, \tag{8}
\end{equation*}
$$

where $\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}$. For a steady-state wave system, all wave amplitudes a_{i}, wavenumbers \boldsymbol{k}_{i}, and actual wave frequencies σ_{i}, where $i=1,2$, are independent of time. Using the new variables ξ_{i}, the original initial/boundary-value problem governed by (3)-(6) can be transformed into a boundary-value problem. Therefore, in the coordinate system $\left(\xi_{1}, \xi_{2}, z\right)$, the governing equation (3) becomes

$$
\begin{equation*}
\sum_{i=1}^{2} \sum_{j=1}^{2} \boldsymbol{k}_{i} \cdot \boldsymbol{k}_{j} \frac{\partial^{2} \varphi}{\partial \xi_{i} \xi_{j}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0,-\infty \leq z \leq \eta\left(\xi_{1}, \xi_{2}\right), \tag{9}
\end{equation*}
$$

subject to the following two boundary conditions on the unknown free surface $z=\eta\left(\xi_{1}, \xi_{2}\right)$:

$$
\begin{gather*}
\mathcal{N}_{1}[\varphi]=\sum_{i=1}^{2} \sum_{j=1}^{2} \sigma_{i} \sigma_{j} \frac{\partial^{2} \varphi}{\partial \xi_{i} \xi_{j}}+g \frac{\partial \varphi}{\partial z}-2 \sum_{i=1}^{2} \sigma_{i} \frac{\partial f}{\partial \xi_{i}} \\
+\sum_{i=1}^{2} \sum_{j=1}^{2} \boldsymbol{k}_{i} \cdot \boldsymbol{k}_{j} \frac{\partial \varphi}{\partial \xi_{i}} \frac{\partial f}{\partial \xi_{j}}+\frac{\partial \varphi}{\partial z} \frac{\partial f}{\partial z}=0, \tag{10}\\
\mathcal{N}_{2}[\varphi, \eta]=\eta-\frac{1}{g}\left(\sum_{i=1}^{2} \sigma_{i} \frac{\partial \varphi}{\partial \xi_{i}}-f\right)=0, \tag{11}
\end{gather*}
$$

and the impermeability condition at the bottom,

$$
\begin{equation*}
\lim _{z \rightarrow-\infty} \frac{\partial \varphi}{\partial z}=0 \tag{12}
\end{equation*}
$$

where \mathcal{N}_{1} and \mathcal{N}_{2} are the two nonlinear operators defined above and

$$
\begin{equation*}
f=\frac{1}{2}\left[\sum_{i=1}^{2} \sum_{j=1}^{2} \boldsymbol{k}_{i} \cdot \boldsymbol{k}_{j} \frac{\partial \varphi}{\partial \xi_{i}} \frac{\partial \varphi}{\partial \xi_{j}}+\left(\frac{\partial \varphi}{\partial z}\right)^{2}\right] . \tag{13}
\end{equation*}
$$

The velocity potential $\varphi\left(\xi_{1}, \xi_{2}, z\right)$ can be expressed by

$$
\begin{equation*}
\varphi\left(\xi_{1}, \xi_{2}, z\right)=\sum_{m_{1}=0}^{+\infty} \sum_{m_{2}=-\infty}^{+\infty} a_{m_{1}, m_{2}} \Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right) \tag{14}
\end{equation*}
$$

with the definition

$$
\begin{equation*}
\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)=\sin \left(m_{1} \xi_{1}+m_{2} \xi_{2}\right) \cdot \exp \left(\left|m_{1} \boldsymbol{k}_{1}+m_{2} \boldsymbol{k}_{2}\right| z\right) \tag{15}
\end{equation*}
$$

where $a_{m_{1}, m_{2}}$ are constants to be determined later. Note that the velocity potential (14) automatically satisfies the linear governing equation (9) and the bottom boundary condition (12). Therefore, the wave elevation $\eta\left(\xi_{1}, \xi_{2}\right)$ can be expressed by

$$
\begin{equation*}
\eta\left(\xi_{1}, \xi_{2}\right)=\sum_{m_{1}=0}^{+\infty} \sum_{m_{2}=-\infty}^{+\infty} b_{m_{1}, m_{2}} \cos \left(m_{1} \xi_{1}+m_{2} \xi_{2}\right) \tag{16}
\end{equation*}
$$

where $b_{m_{1}, m_{2}}$ are constants to be determined later. Note that the unknown coefficients $a_{m_{1}, m_{2}}$ and $b_{m_{1}, m_{2}}$ are determined by the two nonlinear boundary conditions (10) and (11).

B. Solution procedure

The above-mentioned nonlinear partial differential equations (PDEs) related to the steady-state resonant waves have been successfully solved using the HAM in many different cases. Liao ${ }^{23}$ used the HAM to obtain, for the first time, solutions of the steadystate gravity waves of resonant quartets in deep water. Thereafter, Xu et al., ${ }^{24}$ Liu and Liao, ${ }^{25}$ Liao et al., ${ }^{26}$ and Liu et al. ${ }^{27}$ extended the study of steady-state gravity waves to more complicated cases, including both exactly- and nearly resonant waves. Recently, steady-state acoustic-gravity waves were obtained by Yang et al. ${ }^{29}$ using the HAM. For the sake of simplicity, we briefly describe some key mathematical processes here; detailed mathematical derivations can be found in the above-mentioned articles. Let $q \in[0,1]$ denote the embedding parameter. In the HAM framework, we first construct a family of solutions $\Phi\left(\xi_{1}, \xi_{2}, z ; q\right), \zeta\left(\xi_{1}, \xi_{2} ; q\right)$, $\Lambda_{1}(q)$, and $\Lambda_{2}(q)$ in $q \in[0,1]$ by means of the so-called zeroth-order deformation equations,

$$
\begin{equation*}
\sum_{i=1}^{2} \sum_{j=1}^{2} \sigma_{i} \sigma_{j} \frac{\partial^{2} \Phi}{\partial \xi_{i} \xi_{j}}+g \frac{\partial \Phi}{\partial z}=0,-\infty \leq z \leq \zeta\left(\xi_{1}, \xi_{2} ; q\right), \tag{17}
\end{equation*}
$$

subject to the two boundary conditions on the unknown elevation $z=\eta\left(\xi_{1}, \xi_{2} ; q\right)$,

$$
\begin{array}{rl}
(1-q) & \mathcal{L}\left[\Phi\left(\xi_{1}, \xi_{2}, z ; q\right)-\varphi_{0}\left(\xi_{1}, \xi_{2}, z\right)\right] \\
=c_{0} q \mathcal{N}_{1}\left[\Phi\left(\xi_{1}, \xi_{2}, z ; q\right), \Lambda_{1}(q), \Lambda_{2}(q)\right] \\
(1-q) \zeta\left(\xi_{1}, \xi_{2} ; q\right) \\
=c_{0} & q \mathcal{N}_{2}\left[\Phi\left(\xi_{1}, \xi_{2}, z ; q\right), \zeta\left(\xi_{1}, \xi_{2} ; q\right), \Lambda_{1}(q), \Lambda_{2}(q)\right] \tag{19}
\end{array}
$$

and the impermeability condition at the bottom,

$$
\begin{equation*}
\lim _{z \rightarrow-\infty} \frac{\partial \Phi}{\partial z}=0 \tag{20}
\end{equation*}
$$

where \mathcal{N}_{1} and \mathcal{N}_{2} are the two nonlinear operators defined by (10) and (11), \mathcal{L} is an auxiliary linear operator that can be almost freely chosen, $\varphi_{0}\left(\xi_{1}, \xi_{2}, z\right)$ is the initial guess of $\varphi\left(\xi_{1}, \xi_{2}, z\right)$, and $c_{0} \neq 0$ is the so-called "convergence-control parameter" (which has no physical meaning). Here, Φ, ζ, Λ_{1}, and Λ_{2} correspond to the unknown φ, η, σ_{1}, and σ_{2}, respectively. Note that we have great freedom to choose the auxiliary linear operator \mathcal{L} and the initial guess $\varphi_{0}\left(\xi_{1}, \xi_{2}, z\right)$. Obviously, when $q=0$, we have the solution

$$
\begin{equation*}
\Phi\left(\xi_{1}, \xi_{2}, z ; 0\right)=\varphi_{0}\left(\xi_{1}, \xi_{2}, z\right), \quad \zeta\left(\xi_{1}, \xi_{2} ; 0\right)=0 . \tag{21}
\end{equation*}
$$

When $q=1$, Eqs. (17) $-(20)$ are equivalent to the original equations (9)-(12), respectively, and so we have

$$
\begin{gather*}
\Phi\left(\xi_{1}, \xi_{2}, z ; 1\right)=\varphi\left(\xi_{1}, \xi_{2}, z\right), \quad \zeta\left(\xi_{1}, \xi_{2} ; 1\right)=\eta\left(\xi_{1}, \xi_{2}\right), \\
\Lambda_{1}(1)=\sigma_{1}, \quad \Lambda_{2}(1)=\sigma_{2} . \tag{22}
\end{gather*}
$$

Thus, as q increases from 0 to $1, \Phi\left(\xi_{1}, \xi_{2}, z ; q\right)$ deforms continuously from the initial guess $\varphi_{0}\left(\xi_{1}, \xi_{2}, z\right)$ to the unknown potential function $\varphi\left(\xi_{1}, \xi_{2}, z\right)$, as does $\zeta\left(\xi_{1}, \xi_{2} ; q\right)$ from 0 to the unknown wave profile $\eta\left(\xi_{1}, \xi_{2}\right)$ and $\Lambda_{1}(q), \Lambda_{2}(q)$ from the initial guesses $\sigma_{1,0}, \sigma_{2,0}$ to the unknown frequencies σ_{1}, σ_{2}, respectively.

Assuming that the convergence-control parameter c_{0} is chosen so that the Maclaurin series of $\Phi\left(\xi_{1}, \xi_{2}, z ; q\right), \zeta\left(\xi_{1}, \xi_{2} ; q\right), \Lambda_{1}(q)$, and $\Lambda_{2}(q)$ with respect to the embedding parameter q, i.e.,

$$
\begin{align*}
\Phi\left(\xi_{1}, \xi_{2}, z ; q\right) & =\sum_{m=0}^{+\infty} \varphi_{m}\left(\xi_{1}, \xi_{2}, z\right) q^{m} \tag{23a}\\
\zeta\left(\xi_{1}, \xi_{2} ; q\right) & =\sum_{m=0}^{+\infty} \eta_{m}\left(\xi_{1}, \xi_{2}\right) q^{m} \tag{23b}\\
\Lambda_{1}(q) & =\sum_{m=0}^{+\infty} \sigma_{1, m} q^{m} \tag{23c}\\
\Lambda_{2}(q) & =\sum_{m=0}^{+\infty} \sigma_{2, m} q^{m} \tag{23d}
\end{align*}
$$

exist and converge at $q=1$, we have the so-called homotopy-series solution,

$$
\begin{align*}
\varphi\left(\xi_{1}, \xi_{2}, z\right) & =\sum_{m=0}^{+\infty} \varphi_{m}\left(\xi_{1}, \xi_{2}, z\right) \tag{24a}\\
\eta\left(\xi_{1}, \xi_{2}\right) & =\sum_{m=0}^{+\infty} \eta_{m}\left(\xi_{1}, \xi_{2}\right), \tag{24b}\\
\sigma_{1} & =\sum_{m=0}^{+\infty} \sigma_{1, m} \tag{24c}\\
\sigma_{2} & =\sum_{m=0}^{+\infty} \sigma_{2, m} \tag{24d}
\end{align*}
$$

respectively.
Substituting the Maclaurin series (23) into the zeroth-order deformation equations (17)-(20) and then equating powers of q, we obtain the so-called high-order deformation equations,

$$
\begin{equation*}
\sum_{i=1}^{2} \sum_{j=1}^{2} \sigma_{i} \sigma_{j} \frac{\partial^{2} \varphi_{m}}{\partial \xi_{i} \xi_{j}}+g \frac{\partial \varphi_{m}}{\partial z}=0,-\infty \leq z \leq 0, \tag{25}
\end{equation*}
$$

subject to the linear boundary condition,

$$
\begin{equation*}
\mathcal{L}\left[\varphi_{m}\right]=c_{0} \Delta_{m-1}^{\varphi}+\chi_{m} S_{m-1}-\bar{S}_{m}, \quad \text { on } z=0, \tag{26}
\end{equation*}
$$

and the bottom condition,

$$
\begin{equation*}
\frac{\partial \varphi_{m}}{\partial z}=0, \text { as } z \rightarrow-\infty \tag{27}
\end{equation*}
$$

together with

$$
\begin{equation*}
\eta_{m}=c_{0} \Delta_{m-1}^{\eta}+\chi_{m} \eta_{m-1}, \quad \text { on } z=0 \tag{28}
\end{equation*}
$$

where $\chi_{1}=0$ and $\chi_{m}=1$ for $m>1$. Both \bar{S}_{m} and S_{m} are dependent upon the auxiliary linear operator and will thus be defined later. The
definitions of Δ_{m-1}^{φ} and Δ_{m-1}^{η} are the same as those given by Yang et al. ${ }^{29}$ Note that all of the $\Delta_{m-1}^{\varphi}, \Delta_{m-1}^{\eta}, \bar{S}_{m}$, and S_{m} on the right-hand side of (26) and (28) are determined by the known previous approximations η_{j} and $\varphi_{j}(j=0,1,2, \ldots, m-1)$ and can thus be regarded as known terms. Some highlights and distinguishing features for the considered problem are given below.

C. Singularities of two steady-state progressive waves traveling on the same line

Consider a wave system with resonant components of the wavenumber $\boldsymbol{k}_{0, \text {, }}$, generated by two primary components with wavenumbers \boldsymbol{k}_{1} and \boldsymbol{k}_{2} traveling on the same line. The resonance criteria

$$
\begin{equation*}
m_{l} \boldsymbol{k}_{1}+n_{l} \boldsymbol{k}_{2}=\boldsymbol{k}_{0, l}, \quad m_{l} \omega_{1}+n_{l} \omega_{2}=\omega_{0, l} \tag{29}
\end{equation*}
$$

hold, where $\iota=1,2, \ldots, m_{\iota}$ and n_{ι} are integers, and $\omega_{i}=\sqrt{g\left|\boldsymbol{k}_{i}\right|}$ and $\omega_{0, \iota}=\sqrt{g\left|\boldsymbol{k}_{0, t}\right|}$ are the linear frequencies. Such collinear wave systems often have an infinite number of resonances, i.e., singularities. For example, let us consider two cases. The first is the wave system consisting of two primary waves traveling in the same direction:

$$
\begin{equation*}
\boldsymbol{k}_{1}=\left(\frac{9}{4}, 0\right) \mathrm{m}^{-1}, \boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1} \tag{30}
\end{equation*}
$$

The second is the wave system consisting of two primary waves traveling in opposite directions:

$$
\begin{equation*}
\boldsymbol{k}_{1}=\left(\frac{9}{4}, 0\right) \mathrm{m}^{-1}, \boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1} \tag{31}
\end{equation*}
$$

The corresponding linear frequencies of the primary waves are $\omega_{1}=3 \sqrt{g} / 2$ and $\omega_{2}=\sqrt{g}$, respectively.
Let

$$
\begin{equation*}
\mathcal{L}_{0}[\varphi]=\omega_{1}^{2} \frac{\partial^{2} \varphi}{\partial \xi_{1}^{2}}+2 \omega_{1} \omega_{2} \frac{\partial^{2} \varphi}{\partial \xi_{1} \partial \xi_{2}}+\omega_{2}^{2} \frac{\partial^{2} \varphi}{\partial \xi_{2}^{2}}+g \frac{\partial \varphi}{\partial z} \tag{32}
\end{equation*}
$$

denote a linear operator corresponding to the linear parts of the boundary condition (10). This has the property

$$
\begin{equation*}
\mathcal{L}_{0}\left[\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)\right]=\lambda_{m_{1}, m_{2}}^{a} \Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right), \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{m_{1}, m_{2}}^{a}=g\left|m_{1} \boldsymbol{k}_{1}+m_{2} \boldsymbol{k}_{2}\right|-\left(m_{1} \omega_{1}+m_{2} \omega_{2}\right)^{2} . \tag{34}
\end{equation*}
$$

Therefore, its inverse operator \mathcal{L}_{0}^{-1} is given by

$$
\begin{equation*}
\mathcal{L}_{0}^{-1}\left[\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)\right]=\frac{\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)}{\lambda_{m_{1}, m_{2}}^{a}} \tag{35}
\end{equation*}
$$

Obviously, $\lambda_{m_{1}, m_{2}}^{a}=0$ corresponds to the wave resonance and leads to the singularity.

For two wave trains traveling in the same direction, $\lambda_{m_{1}, m_{2}}^{a}=0$ in the case of (30) gives an algebraic equation in the integers m_{1} and m_{2},

$$
\begin{equation*}
\left|\frac{9}{4} m_{1}+m_{2}\right|-\left(\frac{3}{2} m_{1}+m_{2}\right)^{2}=0 \tag{36}
\end{equation*}
$$

which has an infinite number of solutions (some of which are listed in Table I). Therefore, there exist an infinite number of zero-valued

TABLE I. Values of (m_{1}, m_{2}) corresponding to $\lambda_{m_{1}, m_{2}}^{a}=0$ in the case of \boldsymbol{k}_{1} $=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$.

$\left(m_{1}, m_{2}\right)$	$\left(m_{1}, m_{2}\right)$
$(1,0)$	$(8,-9)$
$(0,1)$	$(8,-14)$
$(1,-2)$	$(16,-20)$
$(5,-5)$	$(16,-27)$
$(5,-9)$	\cdots

TABLE II. Values of (m_{1}, m_{2}) corresponding to $\lambda_{m_{1}, m_{2}}^{a}=0$ in the case of \boldsymbol{k}_{1} $=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$.

$\left(m_{1}, m_{2}\right)$	$\left(m_{1}, m_{2}\right)$
$(1,0)$	$(13,-13)$
$(0,1)$	$(13,-27)$
$(1,-4)$	$(17,-18)$
$(8,-7)$	$(17,-34)$
$(8,-18)$	\cdots

denominators in (35), and these are associated with an infinite number of resonances. Similarly, when the two wave trains are traveling in opposite directions, $\lambda_{m_{1}, m_{2}}^{a}=0$ in the case of (31) gives an algebraic equation in the integers m_{1} and m_{2},

$$
\begin{equation*}
\left|\frac{9}{4} m_{1}-m_{2}\right|-\left(\frac{3}{2} m_{1}+m_{2}\right)^{2}=0, \tag{37}
\end{equation*}
$$

which also has an infinite number of solutions (some of which are listed in Table II), and these are also associated with an infinite number of resonances. It is rather difficult to handle such nonlinear problems with an infinite number of singularities by means of traditional analytic approximation methods, such as perturbation techniques.

D. Choice of auxiliary linear operator and initial potential

The above-mentioned mathematical difficulty in the problem considered in this paper can be easily solved by means of the HAM, mainly because, unlike perturbation methods, the HAM provides great freedom to choose the so-called auxiliary linear operator and the initial values of unknown functions.

1. Avoidance of an infinite number of singularities

Different from perturbation methods, the HAM provides great freedom to choose the auxiliary linear operator. Therefore, we can choose such an auxiliary linear operator as

$$
\begin{equation*}
\mathcal{L}[\varphi]=\omega_{1}^{2} \frac{\partial^{2} \varphi}{\partial \xi_{1}^{2}}+2 \omega_{1} \omega_{2} \frac{\partial^{2} \varphi}{\partial \xi_{1} \partial \xi_{2}}+\omega_{2}^{2} \frac{\partial^{2} \varphi}{\partial \xi_{2}^{2}}+\mu_{1} g \frac{\partial \varphi}{\partial z} \tag{38}
\end{equation*}
$$

where

$$
\mu_{1}=\left\{\begin{array}{cl}
1, & m_{1}=1, m_{2}=0 ; m_{1}=0, m_{2}=1, \tag{39}\\
\pi / 3, & \text { else } .
\end{array}\right.
$$

The auxiliary linear operator (38) has the property

$$
\begin{equation*}
\mathcal{L}\left[\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)\right]=\lambda_{m_{1}, m_{2}}^{b} \Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right), \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{m_{1}, m_{2}}^{b}=\mu_{1} g\left|m_{1} \boldsymbol{k}_{1}+m_{2} \boldsymbol{k}_{2}\right|-\left(m_{1} \omega_{1}+m_{2} \omega_{2}\right)^{2} \tag{41}
\end{equation*}
$$

Thus, its inverse operator \mathcal{L}^{-1} is

$$
\begin{equation*}
\mathcal{L}^{-1}\left[\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)\right]=\frac{\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)}{\lambda_{m_{1}, m_{2}}^{b}} \tag{42}
\end{equation*}
$$

Obviously, $\lambda_{m_{1}, m_{2}}^{b}=0$ corresponds to a singularity.
In the case of (30), $\lambda_{m_{1}, m_{2}}^{b}=0$ leads to the algebraic equation

$$
\begin{equation*}
\mu_{1}\left|\frac{9}{4} m_{1}+m_{2}\right|-\left(\frac{3}{2} m_{1}+m_{2}\right)^{2}=0 \tag{43}
\end{equation*}
$$

where μ_{1} is defined by (39) and m_{1}, m_{2} should be integers. When $\mu_{1}=1$, the above equation has two integer solutions, $m_{1}=1, m_{2}=0$ and $m_{1}=0, m_{2}=1$, i.e.,

$$
\begin{equation*}
\lambda_{1,0}^{b}=\lambda_{0,1}^{b}=0 . \tag{44}
\end{equation*}
$$

However, when $\mu_{1}=\pi / 3$ and unless $m_{1}=0$ and $m_{2}=0$, the first term $\mu_{1}\left|\frac{9}{4} m_{1}+m_{2}\right|$ is an irrational number, but the second term $\left(\frac{3}{2} m_{1}+m_{2}\right)^{2}$ is rational so that

$$
\mu_{1}\left|\frac{9}{4} m_{1}+m_{2}\right|-\left(\frac{3}{2} m_{1}+m_{2}\right)^{2} \neq 0
$$

always holds, i.e., $\lambda_{m_{1}, m_{2}}^{b} \neq 0$. Thus, in the case of (30), the auxiliary linear operator (38) has only two singularities, although the original linear operator (32) has an infinite number of singularities. In this way, an infinite number of zero-valued denominators associated with an infinite number of resonant components of the nonlinear interaction of two wave trains traveling in the same/opposite direction are avoided by choosing an appropriate auxiliary linear operator (38). One can even choose different irrational values of μ_{1}, such as $\mu_{1}=\sqrt{2}$ or $\mu_{1}=\pi / 4$; all of them work quite well and give convergent results. Note that it is the HAM that provides us with the freedom to choose such an auxiliary linear operator (38).

Similarly, in the case of (31), the auxiliary linear operator (38) has only two singularities, i.e., $\lambda_{1,0}^{b}=\lambda_{0,1}^{b}=0$.

When the auxiliary linear operator is defined by (38), the terms \bar{S}_{m} and S_{m} in the high-order deformation equations (26) read

$$
\begin{gather*}
\bar{S}_{m}=\sum_{n=1}^{m-1}\left(\omega_{1}^{2} \beta_{2,0}^{m-n, n}+2 \omega_{1} \omega_{2} \beta_{1,1}^{m-n, n}+\omega_{2}^{2} \beta_{0,2}^{m-n, n}+\mu_{1} g \gamma_{0,0}^{m-n, n}\right) \tag{45}\\
S_{m}=\omega_{1}^{2} \beta_{2,0}^{m, 0}+2 \omega_{1} \omega_{2} \beta_{1,1}^{m, 0}+\omega_{2}^{2} \beta_{0,2}^{m, 0}+\mu_{1} g \gamma_{0,0}^{m, 0}+\bar{S}_{m} \tag{46}
\end{gather*}
$$

where $\beta_{i, j}^{n, m}$ and $\gamma_{i, j}^{n, m}$ have the same definitions as those given by Liao. ${ }^{23}$

For the auxiliary linear operator (38), we choose the initial potential

$$
\begin{equation*}
\varphi_{0}=a \sqrt{g / k_{1}} \Psi_{1,0}+b \sqrt{g / k_{2}} \Psi_{0,1} \tag{47}
\end{equation*}
$$

where the given constants a and b corresponding to the two primary waves $\Psi_{1,0}$ and $\Psi_{0,1}$ are defined by (15).

2. Acceleration of convergence

As mentioned above, the HAM provides significant freedom to choose an appropriate auxiliary linear operator (38) that avoids the problem of infinite singularities. This kind of freedom is so great that even different irrational values of μ_{1} in the auxiliary linear operator (38) give the same results. Note that this freedom can be further used to accelerate the convergence in cases of high nonlinearity, as described below.

Using (38) as the auxiliary linear operator and (47) as the initial guess for the velocity potential in the HAM framework, we obtain convergent series solutions for the steady-state system consisting of the nonlinear interaction of two collinear progressive waves in the same/opposite direction with an infinite number of resonant components. The two primary waves often contain most of the wave energy. However, as the nonlinearity increases, i.e., a and b in the initial guess (47) become larger, other wave components such as $(1,-1)$ might contain an increasing amount of wave energy. Mathematically, this will lead to slower convergence of the series solution. Fortunately, in the HAM framework, we can accelerate the convergence by choosing a more suitable auxiliary operator,

$$
\begin{equation*}
\mathcal{L}[\varphi]=\omega_{1}^{2} \frac{\partial^{2} \varphi}{\partial \xi_{1}^{2}}+\mu_{3} \omega_{1} \omega_{2} \frac{\partial^{2} \varphi}{\partial \xi_{1} \partial \xi_{2}}+\omega_{2}^{2} \frac{\partial^{2} \varphi}{\partial \xi_{2}^{2}}+\mu_{2} g \frac{\partial \varphi}{\partial z} \tag{48}
\end{equation*}
$$

where

$$
\mu_{2}= \begin{cases}1, & m_{1}=1, m_{2}=0 ; m_{1}=0, m_{2}=1 ; \tag{49}\\ & m_{1}=1, m_{2}=-1\end{cases}
$$

and

$$
\mu_{3}= \begin{cases}\frac{g\left|m_{1} \boldsymbol{k}_{1}+m_{2} k_{2}\right|-\left(m_{1}^{2} \omega_{1}^{2}+m_{2}^{2} \omega_{2}^{2}\right)}{m_{1} m_{2} \omega_{1} \omega_{2}}, & \tag{50}\\ 2, & m_{1}=1, m_{2}=-1, \\ \text { else. }\end{cases}
$$

The auxiliary linear operator (48) has the property

$$
\begin{equation*}
\mathcal{L}\left[\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)\right]=\lambda_{m_{1}, m_{2}}^{c} \Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right) \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{m_{1}, m_{2}}^{c}=\mu_{2} g\left|m_{1} \boldsymbol{k}_{1}+m_{2} \boldsymbol{k}_{2}\right|-\left(m_{1}^{2} \omega_{1}^{2}+\mu_{3} m_{1} m_{2} \omega_{1} \omega_{2}+m_{2}^{2} \omega_{2}^{2}\right) . \tag{52}
\end{equation*}
$$

Its inverse operator \mathcal{L}^{-1} is

$$
\begin{equation*}
\mathcal{L}^{-1}\left[\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)\right]=\frac{\Psi_{m_{1}, m_{2}}\left(\xi_{1}, \xi_{2}, z\right)}{\lambda_{m_{1}, m_{2}}^{c}} \tag{53}
\end{equation*}
$$

Similarly, it is easily shown that the auxiliary linear operator (48) has only three singularities,

$$
\begin{equation*}
\lambda_{1,0}^{c}=\lambda_{0,1}^{c}=\lambda_{1,-1}^{c}=0 . \tag{54}
\end{equation*}
$$

For the auxiliary linear operator (48), the terms \bar{S}_{m} and S_{m} in the high-order deformation equations (26) are

$$
\begin{gather*}
\bar{S}_{m}=\sum_{n=1}^{m-1}\left(\omega_{1}^{2} \beta_{2,0}^{m-n, n}+\mu_{3} \omega_{1} \omega_{2} \beta_{1,1}^{m-n, n}+\omega_{2}^{2} \beta_{0,2}^{m-n, n}+\mu_{2} g \gamma_{0,0}^{m-n, n}\right), \tag{55}\\
S_{m}=\omega_{1}^{2} \beta_{2,0}^{m, 0}+\mu_{3} \omega_{1} \omega_{2} \beta_{1,1}^{m, 0}+\omega_{2}^{2} \beta_{0,2}^{m, 0}+\mu_{2} g \gamma_{0,0}^{m, 0}+\bar{S}_{m} . \tag{56}
\end{gather*}
$$

TABLE III. Values of $\epsilon_{1}\left(\epsilon_{2}\right),\left|\eta_{\text {max }}\right|$, and $\left|\eta_{\text {min }}\right|$ in the case of $\boldsymbol{k}_{1}=(1,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$ with different values of steepness.

	$a(b)=7 / 200 \mathrm{~m}$ (steepness $\approx 0.07)$			$a(b)=1 / 10 \mathrm{~m}$ (steepness ≈ 0.2)			$a(b)=2 / 10 \mathrm{~m}$ (steepness $\approx 0.4)$		
	$\epsilon_{1}\left(\epsilon_{2}\right)$	$\left\|\eta_{\text {max }}\right\|$	$\left\|\eta_{\text {min }}\right\|$	$\epsilon_{1}\left(\epsilon_{2}\right)$	$\left\|\eta_{\text {max }}\right\|$	$\left\|\eta_{\text {min }}\right\|$	$\epsilon_{1}\left(\epsilon_{2}\right)$	$\left\|\eta_{\text {max }}\right\|$	$\left\|\eta_{\text {min }}\right\|$
HAM	0.999386	0.0725947	0.0676843	0.994908	0.223647	0.182918	0.978666	0.515985	0.341165
Tadjbakhsh and Keller	0.999387	0.0726239	0.0677194	0.995014	0.224167	0.183873	0.979602	0.515616	0.350775
Schwartz and Whitney	0.999388	0.0724802	0.0675839	0.995033	0.220606	0.180863	0.980549	0.483818	0.335678

In this case, we choose the initial potential to be

$$
\begin{equation*}
\varphi_{0}=a \sqrt{g / k_{1}} \Psi_{1,0}+b \sqrt{g / k_{2}} \Psi_{0,1}+\gamma_{0} \Psi_{1,-1} \tag{57}
\end{equation*}
$$

where the two constants a and b are given, but γ_{0} is to be determined. In this way, the convergence of the series solution can be accelerated, as shown below.

III. RESULT ANALYSIS

A. A validation case: Nonlinear standing waves

Nonlinear standing waves are special cases of two progressive waves traveling in the opposite directions with an infinite number of exact resonances. In this section, we first consider the nonlinear standing waves with the wavevectors satisfying the following condition:

$$
\begin{equation*}
\boldsymbol{k}_{1}=(1,0) \mathrm{m}^{-1}, \boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1} . \tag{58}
\end{equation*}
$$

Based on the HAM, we successfully obtained the convergent solutions of nonlinear standing waves. The HAM result agrees well with the 3rd-order perturbation solution given by Tabjbakhsh and Keller ${ }^{42}$ and the 25th-order perturbation solution given by Schwartz and Whitney, ${ }^{43}$ as presented in Table III for different values of steepness. As mentioned by Schwartz and Whitney, ${ }^{43}$ the 25 th-order perturbation solution is not uniformly convergent for a steepness greater than 0.3 . Therefore, when the steepness ≈ 0.4, the solution of the HAM is more closer to the result of Tabjbakhsh and Keller. ${ }^{42}$ This illustrates the validity of our HAM approach.

B. Convergence of the series solution given by the HAM

To demonstrate the validity of the proposed approach based on the HAM, let us first consider the case of $\boldsymbol{k}_{1}=\left(\frac{9}{4}, 0\right) \mathrm{m}^{-1}$ and \boldsymbol{k}_{2} $=(1,0) \mathrm{m}^{-1}$ with $a=b=2 / 100 \mathrm{~m}$ by means of the auxiliary linear operator (38) and the initial guess (47). Substituting the initial guess (47) into the so-called first-order deformation equation (26) $(m=1)$ in the HAM framework, we have

$$
\begin{align*}
\mathcal{L}\left[\varphi_{1}\right]= & c_{0} \Delta_{0}^{\varphi}-\bar{S}_{1} \\
= & \bar{b}_{1,0} \sin \left(\xi_{1}\right)+\bar{b}_{0,1} \sin \left(\xi_{2}\right)+\bar{b}_{1,-1} \sin \left(\xi_{1}-\xi_{2}\right), \\
& +\bar{b}_{2,-1} \sin \left(2 \xi_{1}-\xi_{2}\right)+\bar{b}_{1,-2} \sin \left(\xi_{1}-2 \xi_{2}\right), \tag{59}
\end{align*}
$$

where $\bar{b}_{m_{1}, m_{2}}$ depends upon the unknown $\sigma_{1,0}$ and $\sigma_{2,0}$. According to the property of the inverse operator (42), the coefficients $\bar{b}_{1,0}$ and $\bar{b}_{0,1}$ of the terms corresponding to the primary components $\sin \left(\xi_{1}\right)$ and
$\sin \left(\xi_{2}\right)$ on the right-hand side of (59) must be zero so as to avoid secular terms. This gives us the set of two nonlinear algebraic equations for $\sigma_{1,0}$ and $\sigma_{2,0}$, i.e.,

$$
\begin{align*}
& 0.924379-0.041761 \sigma_{1,0}^{2}=0 \tag{60a}\\
& 0.617251-0.62642 \sigma_{2,0}^{2}=0 \tag{60b}
\end{align*}
$$

and the unique solution with the assumption $\sigma_{i, 0}>0$ is $\sigma_{1,0}=4.70477$ and $\sigma_{2,0}=3.13905$. As long as $\sigma_{1,0}$ and $\sigma_{2,0}$ can be determined, φ_{0} is known. With the initial guess $\eta_{0}=0$, it is then straightforward to calculate η_{1} directly by means of (28),

$$
\begin{align*}
\eta_{1}= & c_{0} \Delta_{0}^{\eta}=\bar{a}_{0,0}+\bar{a}_{1,0} \cos \left(\xi_{1}\right) \\
& +\bar{a}_{0,1} \cos \left(\xi_{2}\right)+\bar{a}_{1,-1} \cos \left(\xi_{1}-\xi_{2}\right) \tag{61}
\end{align*}
$$

where all coefficients $\bar{a}_{m_{1}, m_{2}}$ are known.
Substituting the known φ_{0} into (26) at $m=1$, we then obtain the special solution φ_{1}^{*} of φ_{1}, say,

$$
\begin{equation*}
\varphi_{1}^{*}=\mathcal{L}^{-1}\left[c_{0} \Delta_{0}^{\varphi}-\bar{S}_{1}\right] . \tag{62}
\end{equation*}
$$

According to the property of the auxiliary linear operator (42), the general solution of φ_{1} is

$$
\begin{equation*}
\varphi_{1}=\varphi_{1}^{*}+a^{*} \Psi_{1,0}+b^{*} \Psi_{0,1} . \tag{63}
\end{equation*}
$$

However, as the components $a \sqrt{g / k_{1}} \Psi_{1,0}$ and $b \sqrt{g / k_{2}} \Psi_{0,1}$ of the two primary waves are known and fixed, we have $a^{*}=b^{*}=0$, and therefore,

$$
\begin{align*}
\varphi_{1}= & \varphi_{1}^{*}=\mathcal{L}^{-1}\left[c_{0} \Delta_{0}^{\varphi}-\bar{S}_{1}\right]=\bar{d}_{1,1} \Psi_{1,1}+\bar{d}_{1,-1} \Psi_{1,-1} \\
& +\bar{d}_{2,-1} \Psi_{2,-1}+\bar{d}_{1,-2} \Psi_{1,-2} \tag{64}
\end{align*}
$$

where $\bar{d}_{m_{1}, m_{2}}=\bar{b}_{m_{1}, m_{2}} / \lambda_{m_{1}, m_{2}}^{b}$. Note that φ_{1} contains the unknown $\sigma_{1,1}$ and $\sigma_{2,1}$. Thus, further substituting φ_{1} into (26) at $m=2$ and

TABLE IV. The averaged residual squares of ε_{m}^{ϕ} and ε_{m}^{η} in the case of \boldsymbol{k}_{1} $=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$ with $a=b=2 / 100 \mathrm{~m}$ and $c_{0}=-0.5$.

m (order of approximation)	ε_{m}^{ϕ}	ε_{m}^{η}
2	0.00005484	0.00009634
4	5.93×10^{-6}	5.78×10^{-6}
6	5.95×10^{-7}	3.67×10^{-7}
8	4.19×10^{-8}	2.57×10^{-8}
10	5.31×10^{-9}	3.49×10^{-9}

TABLE V. m th-order analytical approximations of the dimensionless angular frequencies and the wave amplitude components ($\left.a_{m_{1}, m_{2}}^{\prime}=\left|a_{m_{1}, m_{2}}\right| /\left|a_{1,0}\right|\right)$ in the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$ with $a=b=2 / 100 \mathrm{~m}$ and $c_{0}=-0.5$.

m	ϵ_{1}	ϵ_{2}	$a_{0,1}^{\prime}$	$a_{2,0}^{\prime}$	$a_{1,-1}^{\prime}$	$a_{1,1}^{\prime}$	$a_{0,2}^{\prime}$
2	1.0015	1.0015	1.001	0.007	0.024	0.011	0.003
4	1.0016	1.0012	1.001	0.017	0.017	0.024	0.007
6	1.0016	1.0009	1.000	0.020	0.015	0.029	0.010
8	1.0016	1.0009	1.000	0.022	0.014	0.032	0.011
10	1.0016	1.0008	1.000	0.023	0.014	0.033	0.011
12	1.0016	1.0008	1.000	0.023	0.014	0.033	0.011
13	1.0016	1.0008	1.000	0.023	0.014	0.033	0.011

forcing the coefficients of the terms corresponding to the primary components $\sin \left(\xi_{1}\right)$ and $\sin \left(\xi_{2}\right)$ to be zero so as to avoid secular terms, $\sigma_{1,1}$ and $\sigma_{2,1}$ can be determined. Furthermore, we obtain η_{2} by substituting the known $\varphi_{0}, \varphi_{1}, \eta_{0}$, and η_{1} into (28) at $m=2$, and so on. Similarly, we can determine all of the unknowns step by step.

Note that the so-called "convergence-control parameter" c_{0} exists in the series solution. This parameter modifies the convergence of the solution and thus provides a convenient way to guarantee the convergence. This is an advantage of the HAM that
distinguishes it from other analytic approximation methods. With a proper "convergence-control parameter" c_{0} determined by minimizing the averaged residual squares of the two boundary conditions in a similar way to those described by Liao, ${ }^{23} \mathrm{Xu}$ et al., ${ }^{32}$ and Yang et al., ${ }^{29}$ the corresponding angular frequencies and wave amplitudes converge quickly. For the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and \boldsymbol{k}_{2} $=(1,0) \mathrm{m}^{-1}$ with $a=b=2 / 100 \mathrm{~m}$, we choose $c_{0}=-0.5$. The corresponding residual error squares of the two boundary conditions decease rather quickly to the level 10^{-9} at the 10 th-order, as shown in Table IV. Then, we can obtain the convergent wave frequencies and amplitudes, which are given in Table V. Similarly, for two primary waves traveling in the same direction, we gain the convergent solutions when $a=b=1 / 100 \mathrm{~m}$ and $a=b=3 / 100 \mathrm{~m}$ by means of the auxiliary linear operator (38); several examples are listed in Table VI. Note that, in this paper, we do not give the wave amplitude $\left|a_{m_{1}, m_{2}}\right|$ when $\left|a_{m_{1}, m_{2}}\right|<10^{-4}$.

However, when $a=b$ increases from $1 / 100 \mathrm{~m}$ to $3 / 100 \mathrm{~m}$, the second-order wave component $(1,-1)$ becomes larger in the velocity potential φ, while the convergence slows down. Hence, when $a \geq 4 / 100 \mathrm{~m}$ or $b \geq 4 / 100 \mathrm{~m}$, we use the auxiliary linear operator (48) and the corresponding initial guess (57) so as to accelerate the convergence of the series solution. For the m th-order approximation, we have

$$
\begin{equation*}
\varphi_{m}=\mathcal{L}^{-1}\left[c_{0} \Delta_{m-1}^{\varphi}-\bar{S}_{m}\right]+\gamma_{m} \Psi_{1,-1}, \tag{65}
\end{equation*}
$$

TABLE VI. Dimensionless angular frequencies and dimensionless wave amplitude components $\left(a_{m_{1}, m_{2}}^{\prime}=\left|a_{m_{1}, m_{2}}\right| /\left|a_{1,0}\right|\right)$ in the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$ for different values of wave steepness.

$a(\mathrm{~m})$	$b(\mathrm{~m})$	ϵ_{1}	ϵ_{2}	$a_{0,1}^{\prime}$	$a_{2,0}^{\prime}$	$a_{1,-1}^{\prime}$	$a_{1,1}^{\prime}$	$a_{0,2}^{\prime}$	$a_{3,0}^{\prime}$	$a_{2,1}^{\prime}$	$a_{2,-1}^{\prime}$	$a_{1,2}^{\prime}$
$1 / 100$	$1 / 100$	1.0004	1.0002	1.000	0.010	0.010	0.020	0.010	\ldots	\ldots	\ldots	\ldots
$2 / 100$	$2 / 100$	1.0016	1.0008	1.000	0.025	0.015	0.035	0.010	\ldots	\ldots	0.005	\ldots
$3 / 100$	$3 / 100$	1.0037	1.0018	1.000	0.040	0.020	0.050	0.017	\ldots	0.003	0.013	0.003
$4 / 100$	$4 / 100$	1.0067	1.0033	1.000	0.048	0.028	0.068	0.020	0.003	0.008	0.023	0.005
$6 / 100$	$6 / 100$	1.0158	1.0078	0.998	0.080	0.043	0.103	0.032	0.010	0.017	0.061	0.010
$8 / 100$	$2 / 100$	1.0179	1.0115	0.249	0.097	0.016	0.035	0.002	0.015	0.007	0.035	0.001
$8 / 100$	$4 / 100$	1.0206	1.0123	0.500	0.103	0.032	0.071	0.011	0.017	0.015	0.071	0.005
$8 / 100$	$6 / 100$	1.0255	1.0138	0.749	0.114	0.050	0.107	0.026	0.022	0.025	0.108	0.011
$8 / 100$	$8 / 100$	1.0330	1.0161	0.998	0.133	0.070	0.147	0.047	0.032	0.037	0.150	0.020

TABLE VII. Dimensionless angular frequencies and dimensionless wave amplitude components ($\left.a_{m_{1}, m_{2}}^{\prime}=\left|a_{m_{1}, m_{2}}\right| /\left|a_{1,0}\right|\right)$ in the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and \boldsymbol{k}_{2} $=(-1,0) \mathrm{m}^{-1}$ for different values of wave steepness.

$a(\mathrm{~m})$	$b(\mathrm{~m})$	ϵ_{1}	ϵ_{2}	$a_{0,1}^{\prime}$	$a_{2,0}^{\prime}$	$a_{1,-1}^{\prime}$	$a_{1,1}^{\prime}$	$a_{0,2}^{\prime}$	$a_{3,0}^{\prime}$	$a_{2,1}^{\prime}$	$a_{2,-1}^{\prime}$	$a_{1,-2}^{\prime}$	$a_{3,1}^{\prime}$
$2 / 100$	$2 / 100$	1.0004	0.9996	1.000	0.025	0.035	0.015	0.010	\ldots	\ldots	\ldots	\ldots	\ldots
$5 / 100$	$5 / 100$	1.0027	0.9975	1.000	0.056	0.082	0.032	0.024	0.004	0.004	0.010	0.006	\ldots
$8 / 100$	$8 / 100$	1.0075	0.9933	0.999	0.092	0.130	0.050	0.037	0.012	0.012	0.024	0.014	0.002
$1 / 10$	$1 / 10$	1.0126	0.9891	0.998	0.118	0.162	0.064	0.045	0.021	0.019	0.037	0.022	0.006
$12 / 100$	$2 / 100$	1.0413	0.9771	0.165	0.155	0.032	0.012	0.002	0.037	0.005	0.009	0.001	0.002
$12 / 100$	$5 / 100$	1.0378	0.9782	0.414	0.154	0.081	0.031	0.009	0.036	0.012	0.022	0.005	0.005
$12 / 100$	$8 / 100$	1.0320	0.9800	0.662	0.152	0.126	0.050	0.022	0.035	0.019	0.035	0.014	0.007
$12 / 100$	$1 / 10$	1.0267	0.9816	0.829	0.148	0.162	0.063	0.035	0.033	0.024	0.045	0.021	0.009
$12 / 100$	$12 / 100$	1.0202	0.9836	0.997	0.146	0.195	0.076	0.051	0.031	0.029	0.053	0.031	0.011

TABLE VIII. Energy distribution (\%) of the wave system in the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$ for different values of wave steepness.

$a(\mathrm{~m})$	$b(\mathrm{~m})$	$a_{1,0}^{2} / \Pi$	$a_{0,1}^{2} / \Pi$	$a_{2,0}^{2} / \Pi$	$a_{1,-1}^{2} / \Pi$	$a_{1,1}^{2} / \Pi$	$a_{0,2}^{2} / \Pi$	$a_{3,0}^{2} / \Pi$	$a_{2,1}^{2} / \Pi$	$a_{2,-1}^{2} / \Pi$	$a_{1,2}^{2} / \Pi$	$a_{3,-1}^{2} / \Pi$	$\Pi{ }_{0} / \Pi$
$1 / 100$	$1 / 100$	49.99	49.99	\ldots	\ldots	0.01	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	99.98
$2 / 100$	$2 / 100$	49.95	49.95	0.03	0.01	0.05	0.01	\ldots	\ldots	\ldots	\ldots	\ldots	99.90
$3 / 100$	$3 / 100$	49.89	49.89	0.06	0.02	0.12	0.01	\ldots	\ldots	0.01	\ldots	\ldots	99.78
$4 / 100$	$4 / 100$	49.80	49.78	0.11	0.03	0.22	0.02	\ldots	\ldots	0.03	\ldots	\ldots	99.58
$6 / 100$	$6 / 100$	49.44	49.36	0.31	0.09	0.52	0.05	0.01	0.01	0.08	\ldots	\ldots	98.80
$8 / 100$	$2 / 100$	93.05	5.79	0.88	0.02	0.11	\ldots	0.02	\ldots	0.11	\ldots	0.01	98.84
$8 / 100$	$4 / 100$	78.64	19.57	0.84	0.08	0.39	0.01	0.02	0.02	0.39	\ldots	0.03	98.20
$8 / 100$	$6 / 100$	62.42	39.94	0.82	0.16	0.27	0.04	0.03	0.04	0.73	0.01	0.06	97.36
$8 / 100$	$8 / 100$	48.29	48.04	0.85	0.24	1.04	0.11	0.05	0.07	1.09	0.02	0.11	96.34

where γ_{m} is an additional unknown constant. Note that the auxiliary linear operator (48) has three singularities. According to the property of the inverse operator (53), the coefficients of the three terms corresponding to the wave components $\sin \left(\xi_{1}\right), \sin \left(\xi_{2}\right)$, and $\sin \left(\xi_{1}-\xi_{2}\right)$ on the right-hand side of (26) must be zero to avoid secular terms. This provides a set of algebraic equations to determine the three unknowns $\sigma_{1, m}, \sigma_{2, m}$, and γ_{m}. Similarly, we can choose an appropriate value of the convergence-control parameter c_{0} to guarantee the convergence of the series solution. In this way, we successfully gain the convergent angular frequencies and wave amplitudes for different values of a and b, as listed in Table VI. For two primary waves traveling in opposite directions, we gain convergent solutions in a similar way; several examples are listed in Table VII. Note that, as the wave amplitude increases, an increasing number of wave components join the whole wave system.

The contributions of Stokes' corrections mean that, for the two primary waves traveling in the same direction, the nonlinear frequencies σ_{1} and σ_{2} are always greater than the corresponding linear frequencies ω_{1} and ω_{2}. For the two primary waves traveling in opposite directions, the nonlinear frequency σ_{1} associated with the higher wavenumber is greater than the corresponding linear frequency ω_{1}, but the nonlinear frequency σ_{2} associated with the small wavenumber is less than the related linear frequency ω_{2}. Therefore, the angular frequencies of the second primary wave are always slightly less than 1 , which is different from the case of two primary waves traveling in the same direction. In addition, a larger difference between the
amplitudes of the two primary waves produces a greater deviation of ϵ_{i} from 1, as can be seen from Table VII.

C. Energy distribution of the wave system

Let Π denote the sum of the squared amplitude of all components and write

$$
\begin{equation*}
\Pi_{0}=a_{1,0}^{2}+a_{0,1}^{2} \tag{66}
\end{equation*}
$$

For the collinear steady-state resonant wave system consisting of the nonlinear interaction of two primary waves traveling in the same/ opposite direction, the energy distributions of different wave components with $a_{i, j}^{2} / \Pi \geq 0.01 \%$ are presented in Tables VIII and IX.

The two primary components as a whole occupy most of the wave energy in all of the cases considered here. For a fixed a and a variable b in the initial guess (47) or (57), the wave energy is mainly distributed between the two primary waves, as shown in Fig. 1. A similar conclusion was reported by Xu et al. ${ }^{32}$ for the nonlinear interaction of double cnoidal waves. Note that, when the wave amplitude increases, the wave energy slowly shifts from the primary components to the second-, third-, and even higher-order wave components.

D. Wave profiles

Wave profiles for the steady-state resonant wave system consisting of the interaction of two primary waves traveling in the

TABLE IX. Energy distribution (\%) of the wave system in the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$ for different values of wave steepness.

| $a(\mathrm{~m})$ | $b(\mathrm{~m})$ | $a_{1,0}^{2} / \Pi$ | $a_{0,1}^{2} / \Pi$ | $a_{2,0}^{2} / \Pi$ | $a_{1,-1}^{2} / \Pi$ | $a_{1,1}^{2} / \Pi$ | $a_{0,2}^{2} / \Pi$ | $a_{3,0}^{2} / \Pi$ | $a_{2,1}^{2} / \Pi$ | $a_{2,-1}^{2} / \Pi$ | $a_{1,-2}^{2} / \Pi$ | $a_{3,1}^{2} / \Pi$ | $a_{3,-1}^{2} / \Pi$ | Π_{0} / Π |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 / 100$ | $2 / 100$ | 49.96 | 49.95 | 0.03 | 0.05 | 0.01 | \ldots | 99.91 |
| $5 / 100$ | $5 / 100$ | 49.73 | 49.70 | 0.16 | 0.33 | 0.05 | 0.03 | \ldots | \ldots | \ldots | \ldots | \ldots | \ldots | 99.43 |
| $8 / 100$ | $8 / 100$ | 49.30 | 49.20 | 0.42 | 0.83 | 0.13 | 0.07 | 0.01 | 0.01 | 0.03 | 0.01 | \ldots | \ldots | 98.50 |
| $1 / 10$ | $1 / 10$ | 48.89 | 48.71 | 0.67 | 1.29 | 0.20 | 0.10 | 0.02 | 0.02 | 0.07 | 0.02 | \ldots | \ldots | 97.60 |
| $12 / 100$ | $2 / 100$ | 94.85 | 2.59 | 2.29 | 0.10 | 0.01 | \ldots | 0.13 | \ldots | 0.01 | \ldots | \ldots | \ldots | 97.44 |
| $12 / 100$ | $5 / 100$ | 83.03 | 14.19 | 1.97 | 0.54 | 0.08 | 0.01 | 0.11 | 0.01 | 0.04 | \ldots | \ldots | 0.01 | 97.22 |
| $12 / 100$ | $8 / 100$ | 67.35 | 29.54 | 1.54 | 1.13 | 0.17 | 0.03 | 0.08 | 0.02 | 0.08 | 0.01 | \ldots | 0.01 | 96.90 |
| $12 / 100$ | $1 / 10$ | 57.29 | 39.37 | 1.27 | 1.51 | 0.23 | 0.07 | 0.06 | 0.03 | 0.11 | 0.03 | \ldots | 0.01 | 96.66 |
| $12 / 100$ | $12 / 100$ | 48.38 | 48.03 | 1.03 | 1.84 | 0.28 | 0.13 | 0.05 | 0.04 | 0.14 | 0.05 | 0.01 | 0.01 | 96.42 |

FIG. 1. Wave energy distribution (\%) for increased $b(m)$ in the initial guess: (a) $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}, \boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$, and $a=8 / 100 \mathrm{~m}$, (b) $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$, $k_{2}=(-1,0) \mathrm{m}^{-1}$, and $a=12 / 100 \mathrm{~m}$.
same/opposite direction in the case of $a=b=2 / 100 \mathrm{~m}$ are shown in Figs. 2 and 3, respectively.

We define the wave steepness as

$$
\begin{equation*}
H_{s}=k_{d} \frac{\max \left[\eta\left(\xi_{1}, \xi_{2}\right)\right]-\min \left[\eta\left(\xi_{1}, \xi_{2}\right)\right]}{2} \tag{67}
\end{equation*}
$$

where $\xi_{i} \in[0,2 \pi]$ and k_{d} is the wavenumber corresponding to the dominant frequency (k_{1} in this paper). Without loss of generality, let us consider the two cases (30) and (31). The wave steepness is dependent upon the values of a and b in the initial guess (47) or (57). The maximum and minimum elevations and the wave steepness for the collinear steady-state resonant waves in the same/opposite direction are given in Tables X and XI, respectively. Larger values of a and b produce a greater wave steepness. For the steady-state resonant system consisting of two primary wave trains traveling in the same direction, the wave steepness H_{s} reaches 0.4187 in the case of $a=b=8 / 100 \mathrm{~m}$, corresponding to a finite amplitude steady-state

FIG. 2. Wave profiles at different time instants in the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$ with $a=b=2 / 100 \mathrm{~m}$: (a) $t=0$, (b) $t=0.25 T_{1}$, (c) $t=0.5 T_{1}$, and (d) $t=0.75 T_{1}$, where T_{1} is the actual wave period of the primary wave with $k_{1}=9 / 4 \mathrm{~m}^{-1}$.
wave group mentioned by Liu et al. ${ }^{27}$ and Shemer et al. ${ }^{44}$ For the steady-state resonant system consisting of two primary wave trains traveling in opposite directions, the wave steepness H_{s} reaches 0.5745 when $a=b=12 / 100 \mathrm{~m}$, also corresponding to a finite amplitude steady-state wave group. As a comparison, the limit wave steepness of the Stokes wave and the standing wave are given here. The limit wave steepness of the Stokes wave is about $0.44,{ }^{45}$ and the limit wave steepness of the standing wave is about $0.64 .{ }^{46}$ It can be seen that the steady-state wave systems with the maximum steepness we obtained in this paper are in the range of finite amplitude steadystate wave groups and the maximum steepness closes to the limit wave steepness.

In linear wave theory, $\left|\eta_{\text {max }}^{\prime}\right|=\left|\eta_{\text {min }}^{\prime}\right|=a+b$, where $\eta_{\text {max }}^{\prime}$ and $\eta_{\text {min }}^{\prime}$ represent the maximum and minimum elevations of the linear combined waves, respectively. Define

$$
\begin{equation*}
R=\max \left\{\left|\frac{\eta_{\max }-\eta_{\max }^{\prime}}{\eta_{\max }^{\prime}}\right|,\left|\frac{\eta_{\min }-\eta_{\min }^{\prime}}{\eta_{\min }^{\prime}}\right|\right\} \tag{68}
\end{equation*}
$$

FIG. 3. Wave profiles at different time instants in the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$ with $a=b=2 / 100 \mathrm{~m}$: (a) $t=0$, (b) $t=0.25 T_{1}$, (c) $t=0.5 T_{1}$, and (d) $t=0.75 T_{1}$, where T_{1} is the actual wave period of the primary wave with $k_{1}=9 / 4 \mathrm{~m}^{-1}$.
which indicates the difference in the extreme values of wave elevation given by the linear and nonlinear wave theories. For the two primary wave trains traveling in the same/opposite direction, as the nonlinearity increases, the difference between $\eta_{\text {max }}$ and $\eta_{\text {max }}^{\prime}$

TABLE X. Wave steepness of nonlinear wave groups with $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$ for different values of a and b.

$a(\mathrm{~m})$	$b(\mathrm{~m})$	$\left\|\eta_{\max }\right\|$	$\left\|\eta_{\min }\right\|$	H_{s}
$1 / 100$	$1 / 100$	0.0202	0.0197	0.0448
$2 / 100$	$2 / 100$	0.0405	0.0384	0.0888
$3 / 100$	$3 / 100$	0.0614	0.0565	0.1327
$4 / 100$	$4 / 100$	0.0861	0.0771	0.1836
$6 / 100$	$6 / 100$	0.1379	0.1156	0.2851
$8 / 100$	$2 / 100$	0.1158	0.0945	0.2366
$8 / 100$	$4 / 100$	0.1448	0.1160	0.2934
$8 / 100$	$6 / 100$	0.1765	0.1376	0.3534
$8 / 100$	$8 / 100$	0.2120	0.1594	0.4178

TABLE XI. Wave steepness of nonlinear wave groups with $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$ for different values of a and b.

$a(\mathrm{~m})$	$b(\mathrm{~m})$	$\left\|\eta_{\max }\right\|$	$\left\|\eta_{\min }\right\|$	H_{s}
$2 / 100$	$2 / 100$	0.0411	0.0390	0.0901
$5 / 100$	$5 / 100$	0.1076	0.0943	0.2271
$8 / 100$	$8 / 100$	0.1817	0.1463	0.3690
$1 / 10$	$1 / 10$	0.2371	0.1795	0.4687
$12 / 100$	$2 / 100$	0.1703	0.1244	0.3315
$12 / 100$	$5 / 100$	0.2067	0.1509	0.4023
$12 / 100$	$8 / 100$	0.2450	0.1770	0.4748
$12 / 100$	$1 / 10$	0.2717	0.1943	0.5243
$12 / 100$	$12 / 100$	0.2993	0.2114	0.5745

becomes more and more obvious, as shown in Figs. 4 and 5, respectively. For example, in the case of $a=b=8 / 100 \mathrm{~m}$, the linear wave theory gives $\eta_{\max }^{\prime}=0.1600 \mathrm{~m}$, but the nonlinear wave theory gives $\eta_{\text {max }}=0.2120 \mathrm{~m}$, some 31.9% higher than that in the linear case. Thus, generally speaking, the nonlinearity plays an important role and should not be neglected in the problem considered in this paper. Especially, for the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$, the first primary wave has a large influence on the whole wave system. When $a=12 / 100 \mathrm{~m}$, which is large enough, as the value of $b(b<a)$ changes, the effect of the second primary wave on the nonlinearity of the entire wave system is almost negligible, so the variation of R in Fig. 5(b) is weak.

E. Stability analysis

We consider the linear stability of the two-dimensional collinear steady-state waves with an infinite number of exact resonances to an infinitesimal three-dimensional disturbance. Let

$$
\begin{align*}
\eta(x, y, t) & =\bar{\eta}(x, y)+\eta^{\prime}(x, y, t), \tag{69}\\
\varphi(x, y, t) & =\bar{\varphi}(x, y)+\varphi^{\prime}(x, y, t), \tag{70}
\end{align*}
$$

where $(\bar{\eta}, \bar{\varphi})$ and ($\eta^{\prime}, \varphi^{\prime}$) correspond to the unperturbed and infinitesimal perturbative motions, respectively. It is assumed that $\eta^{\prime} \ll \bar{\eta}$ and $\varphi^{\prime} \ll \bar{\varphi}$. Substituting (69) and (70) into the original governing equations (3)-(6), we obtain the first-order perturbation equations,

$$
\begin{equation*}
\nabla^{2} \varphi^{\prime}=0,-\infty \leq z \leq \bar{\eta}(x, y) \tag{71}
\end{equation*}
$$

$$
\begin{align*}
& \varphi_{t}^{\prime}+g \eta^{\prime}+\bar{\varphi}_{x} \varphi_{x}^{\prime}+\overline{\varphi_{y}} \varphi_{y}^{\prime}+\bar{\varphi}_{z} \varphi_{z}^{\prime}+\left(\bar{\varphi}_{t z}+\bar{\varphi}_{x} \bar{\varphi}_{x z}\right. \\
& \left.\quad+\bar{\varphi}_{y} \bar{\varphi}_{y z}+\bar{\varphi}_{z} \bar{\varphi}_{z z}\right) \eta^{\prime}=0, \quad \text { on } z=\bar{\eta}(x, y), \tag{72}
\end{align*}
$$

$$
\begin{align*}
& \eta_{t}^{\prime}+\bar{\eta}_{x} \varphi_{x}^{\prime}+\bar{\varphi}_{x} \eta_{x}^{\prime}+\bar{\eta}_{y} \varphi_{y}^{\prime}+\bar{\varphi}_{y} \eta_{y}^{\prime}-\varphi_{z}^{\prime} \\
& -\left(\bar{\varphi}_{z z}-\bar{\eta}_{x} \bar{\varphi}_{x z}-\bar{\eta}_{y} \bar{\varphi}_{y z}\right) \eta^{\prime}=0, \quad \text { on } z=\bar{\eta}(x, y), \tag{73}\\
& \lim _{z \rightarrow-\infty} \varphi_{z}^{\prime}=0 \tag{74}
\end{align*}
$$

We look for nontrivial solutions of (72) and (73) of the form

$$
\begin{equation*}
\eta^{\prime}=\mathrm{e}^{-\mathrm{i} \sigma t} \mathrm{e}^{\mathrm{i}\left(k_{p} x+k_{q} y\right)} \sum_{J=-\infty}^{+\infty} \sum_{K=-\infty}^{+\infty} a_{J K} \mathrm{e}^{\mathrm{i}\left(k_{K \times x} x+k_{K, y} y\right)}, \tag{75}
\end{equation*}
$$

FIG. 4. Values of R with respect to the different values of wave steepness when $a=b(\mathrm{~m})$: (a) $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$, and (b) $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$.

$$
\begin{equation*}
\varphi^{\prime}=\mathrm{e}^{-\mathrm{i} \sigma t} \mathrm{e}^{\mathrm{i}\left(k_{p} x+k_{q} y\right)} \sum_{J=-\infty}^{+\infty} \sum_{K=-\infty}^{+\infty} b_{J K} \mathrm{e}^{\mathrm{i}\left(k_{K, x} x+k_{K, y} y\right)} \mathrm{e}^{\kappa_{K} z} \tag{76}
\end{equation*}
$$

where $\boldsymbol{k}_{J K}=\left(J k_{1 x}+K k_{2 x}, J k_{1 y}+K k_{2 y}\right), \kappa_{J K}=\left[\left(k_{p}+k_{J K, x}\right)^{2}+\left(k_{q}+\right.\right.$ $\left.\left.k_{J K, y}\right)^{2}\right]^{\frac{1}{2}},\left(k_{p}, k_{q}\right)$ is the wavevector of perturbation for the linear case, k_{p} and k_{q} are arbitrary real numbers, σ is the frequency of the perturbation, and $a_{J K}$ and $b_{J K}$ are two coefficients.

Once unperturbed wave appears in the wave field, a change from stability to instability can occur only if the eigenvalues satisfy

$$
\begin{equation*}
\sigma_{J_{1} K_{1}}^{s_{1}}\left(k_{p}, k_{q}\right)=\sigma_{J_{2} K_{2}}^{s_{2}}\left(k_{p}, k_{q}\right) . \tag{77}
\end{equation*}
$$

In a linear approximation, the condition when instability happens may be written in the following form:

$$
\begin{equation*}
\kappa_{J_{1} K_{1}}^{1 / 2}+\kappa_{J_{2} K_{2}}^{1 / 2}=\left(J_{1}-J_{2}\right)\left|\boldsymbol{k}_{1}\right|+\left(K_{1}-K_{2}\right)\left|\boldsymbol{k}_{2}\right|^{1 / 2} \tag{78}
\end{equation*}
$$

(a)

(b)

FIG. 5. Values of R with respect to different values of b : (a) $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$, $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$, and $\mathrm{a}=8 / 100 \mathrm{~m}$, and (b) $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}, \boldsymbol{k}_{2}=(-1,0) \mathrm{m}^{-1}$, and $a=12 / 100 \mathrm{~m}$.
with $s_{1}=-s_{2}=1$. Following McLean, ${ }^{47}$ Ioualalen and Kharif, ${ }^{48}$ and Liu and Liao, ${ }^{25}$ we define two general classes of instabilities from (78),

$$
\begin{align*}
& J_{1}+K_{1}=j, J_{2}+K_{2}=-j \quad \text { for the class } \mathrm{I}(j) \tag{79}\\
& J_{1}+K_{1}=j, J_{2}+K_{2}=-j-1 \text { for the class } \mathrm{II}(j) \tag{80}
\end{align*}
$$

where $j=1,2,3, \ldots$ The present study will be limited to class I for $j=1$, which corresponds to the dominant instability caused by fourwave interactions. We adopt the case of $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=$ $(1,0) \mathrm{m}^{-1}$ to study the instability of the system. Given the symmetry in the basic wave, we consider the following five cases, which belong to classes $\mathrm{I} a$ and $\mathrm{I} b$, respectively,

$$
\text { Class I } a\left\{\begin{array}{l}
a 1: J_{1}=0, K_{1}=1, J_{2}=-1, K_{2}=0 \tag{81}\\
a 2: J_{1}=1, K_{1}=0, J_{2}=-2, K_{2}=1
\end{array}\right.
$$

FIG. 6. Resonance curves of class la and Ib from the linear dispersion relation when $\boldsymbol{k}_{1}=(9 / 4,0) \mathrm{m}^{-1}$ and $\boldsymbol{k}_{2}=(1,0) \mathrm{m}^{-1}$. Red: a1; blue: a2; green: $b 1$; black: b2; purple: b3.

$$
\text { Class } \mathrm{I} b\left\{\begin{array}{l}
b 1: J_{1}=0, K_{1}=1, J_{2}=0, K_{2}=-1 \tag{82}\\
b 2: J_{1}=1, K_{1}=0, J_{2}=-1, K_{2}=0 \\
b 3: J_{1}=2, K_{1}=-1, J_{2}=-2, K_{2}=1
\end{array}\right.
$$

When the values of J and K are given, the curves descried by (81) and (82) are plotted in Fig. 6. Class Ib curves are symmetric about the origin, while class I a curves are symmetric about $k_{p}=5 / 8$ and $k_{q}=0$.

The coalescence of the eigenvalues can alternatively be interpreted as a resonance of two infinitesimal modes of wavevectors $\underline{\boldsymbol{k}}_{1}^{\prime}$ and $\boldsymbol{k}_{2}^{\prime}$ with the fundamental components of wavevectors $\overline{\boldsymbol{k}}_{1}$ and $\overline{\boldsymbol{k}}_{2}$ in the basic wave. The resonance condition is

$$
\begin{equation*}
\boldsymbol{k}_{1}^{\prime}+\boldsymbol{k}_{2}^{\prime}=\overline{\boldsymbol{k}}_{1}+\overline{\boldsymbol{k}}_{2}, \quad \omega_{1}^{\prime}+\omega_{2}^{\prime}=\bar{\omega}_{1}+\bar{\omega}_{2} \tag{83}
\end{equation*}
$$

where ω_{i}^{\prime} and $\bar{\omega}_{i}$ denote the frequencies of the corresponding perturbed and unperturbed waves, respectively. For the condition of $b 1$,

$$
\begin{aligned}
& \boldsymbol{k}_{1}^{\prime}=\left(k_{p}+k_{2 x}, k_{q}+k_{2 y}\right)^{t} \\
& \boldsymbol{k}_{2}^{\prime}=-\left(k_{p}-k_{2 x}, k_{q}-k_{2 y}\right)^{t} \\
& \overline{\boldsymbol{k}}_{1}=\overline{\boldsymbol{k}}_{2}=\boldsymbol{k}_{2}
\end{aligned}
$$

As shown in Fig. 6, the curve of $b 1$ is Phillips' Fig. 8, so does the condition of $b 2$.

According to our analysis, the collinear steady-state waves with an infinite number of exact resonances are stable as long as the disturbance does not resonate with any components of the basic wave. This conclusion is consistent with that for the Stokes waves and short-crested waves, so it is reasonable.

IV. CONCLUDING REMARKS AND DISCUSSION

We have investigated the nonlinear interaction of two primary progressive waves traveling in the same/opposite direction. In
particular, there exist an infinite number of resonant wave components in the considered cases, corresponding to an infinite number of singularities in mathematics. Such resonant wave systems are rather difficult to solve by means of traditional analytic approaches such as perturbation methods. Fortunately, this mathematical obstacle can be easily cleared by means of the homotopy analysis method (HAM); the infinite number of singularities of the considered problem can be completely avoided by choosing an appropriate auxiliary linear operator in the HAM framework. In this way, we successfully gain steady-state systems with an infinite number of resonant components, consisting of the nonlinear interaction of the two primary waves traveling in the same or opposite direction. This indicates the general existence of the so-called steady-state resonant waves, even in the case of an infinite number of resonant components.

Let $\mathcal{N}[u]=0$ denote a nonlinear equation, where $\mathcal{N}[u]=$ $\mathcal{L}_{0}[u]+\mathcal{N}_{0}[u]$ contains a linear part $\mathcal{L}_{0}[u]$ and a nonlinear part $\mathcal{N}_{0}[u]$. From the viewpoint of perturbation methods, the linear part $\mathcal{L}_{0}[u]$ plays a key role and contributes to the bulk of the solution, while the nonlinear part $\mathcal{N}_{0}[u]$ provides some small modifications. Thus, in the frame of perturbation methods, the linear part $\mathcal{L}_{0}[u]$ has superiority over the nonlinear part $\mathcal{N}_{0}[u]$. Unfortunately, for the collinear steady-state resonant wave systems considered in this paper, the original linear operator (32) leads to an infinite number of singularities, which are rather difficult to handle mathematically. However, unlike perturbation methods, the HAM regards the nonlinear equation $\mathcal{L}_{0}[u]+\mathcal{N}_{0}[u]=0$ as a whole and relinquishes the superiority of the linear part $\mathcal{L}_{0}[u]$ over the nonlinear part $\mathcal{N}_{0}[u]$. Additionally, the HAM provides great freedom to choose an auxiliary linear operator that might have no obvious relationship with the original \mathcal{L}_{0}. Using this freedom of the HAM, the infinite number of singularities can be avoided, and the mathematical obstacle can be easily overcome. Note that two kinds of auxiliary linear operators, (38) and (48), are successfully used in the HAM framework to obtain convergent series solutions for the considered problems. This strongly suggests that the superiority of the linear part $\mathcal{L}_{0}[u]$ over the nonlinear part $\mathcal{N}_{0}[u]$ in the frame of perturbation methods is wrong and unreasonable. Certainly, the steady-state collinear wave systems with an infinite number of resonances considered in this study illustrate the validity, flexibility, and potential of the HAM to be applied to complicated problems with a high degree of nonlinearity.

Our results indicate that the two primary components often occupy most of the wave energy, although this slowly shifts from the primary components to the second-, third-, and even higherorder wave components as the wave amplitude increases. Nonlinearity plays an important role and should therefore not be neglected in the types of problems considered in this paper. The results of this study deepen our understanding and enrich our knowledge about the resonance of gravity waves, which plays an important role in the growth and propagation of waves.

ACKNOWLEDGMENTS

We acknowledge the helpful suggestions given by the anonymous referees, which greatly enhanced the quality of this article. This work was supported by the National Natural Science Foundation of China (Approval No. 11432009).

REFERENCES

${ }^{1}$ O. M. Phillips, "On the dynamics of unsteady gravity waves of finite amplitude," J. Fluid Mech. 9, 193 (1960).
${ }^{2}$ M. S. Longuet-Higgins, "Resonant interactions between two trains of gravity waves," J. Fluid Mech. 12, 321 (1962).
${ }^{3}$ D. J. Benney, "Non-linear gravity wave interactions," J. Fluid Mech. 14, 577 (1962).
${ }^{4}$ P. A. Madsen and D. R. Fuhrman, "Third-order theory for multi-directional irregular waves," J. Fluid Mech. 698, 304 (2012).
${ }^{5}$ M. Okamura, "Almost limiting short-crested gravity waves in deep water," J. Fluid Mech. 646, 481 (2010).
${ }^{6}$ S. E. Haupt and J. P. Boyd, "Modeling nonlinear resonance: A modification to the Stokes' perturbation expansion," Wave Motion 10, 83 (1988).
${ }^{7}$ S. E. Haupt and J. P. Boyd, "Double cnoidal waves of Korteweg-de Vries equation: A boundary value approach," Physica D 50, 117 (1991).
${ }^{8}$ J. P. Boyd, "New directions in solitons and nonlinear periodic waves: Polycnoidal waves, imbricated solitons, weakly nonlocal solitary waves, and numerical boundary value algorithms," in Advances in Applied Mechanics (Elsevier, 1989), pp. 1-82.
${ }^{9}$ J. P. Boyd, "Why Newton's method is hard for travelling waves: Small denominators, KAM theory, Arnold's linear Fourier problem, non-uniqueness, constraints and erratic failure," Math. Comput. Simul. 74, 72 (2007).
${ }^{10}$ J. Peng, A. F. Tao, Y. M. Liu, J. H. Zheng, J. S. Zhang, and R. S. Wang, "A laboratory study of class III Bragg resonance of gravity surface waves by periodic beds," Phys. Fluids 31, 067110 (2019).
${ }^{11}$ D. L. Xu, Z. L. Lin, and S. J. Liao, "Equilibrium states of class-I Bragg resonant wave system," Eur. J. Mech.: B/Fluids 50, 38-51 (2015).
${ }^{12}$ R. I. Ivanov and C. I. Martin, "On the time-evolution of resonant triads in rotational capillary-gravity water waves," Phys. Fluids 31, 117103 (2019).
${ }^{13}$ U. Kadri and T. R. Akylas, "On resonant triad interactions of acoustic-gravity waves," J. Fluid Mech. 788, R1 (2016).
${ }^{14}$ S. J. Liao, "Proposed homotopy analysis techniques for the solution of nonlinear problem," Ph.D. thesis, Shanghai Jiao Tong University, 1992.
${ }^{15}$ S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman \& Hall/CRC, Boca Raton, 2003).
${ }^{16}$ S. J. Liao, "Notes on the homotopy analysis method: Some definitions and theorems," Commun. Nonlinear Sci. Numer. Simul. 14, 983 (2009).
${ }^{17}$ S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Springer-Verlag, New York, 2011).
${ }^{18}$ S. J. Liao, "A new branch of solutions of boundary-layer flows over an impermeable stretched plate," Int. J. Heat Mass Transfer 48, 2529 (2005).
${ }^{19}$ S. J. Liao and E. Magyari, "Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones," Z. Angew. Math. Phys. 57, 777 (2006).
${ }^{20}$ S. P. Zhu, "An exact and explicit solution for the valuation of American put options," Quant. Finance 6, 229 (2006).
${ }^{21}$ J. Cheng, S. P. Zhu, and S. J. Liao, "An explicit series approximation to the optimal exercise boundary of American put options," Commun. Nonlinear Sci. Numer. Simul. 15, 1148 (2010).
${ }^{22} \mathrm{X}$. Zhong and S. Liao, "On the homotopy analysis method for backward/ forward-backward stochastic differential equations," Numer. Algorithms 76, 487 (2017).
${ }^{23}$ S. J. Liao, "On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves," Commun. Nonlinear Sci. Numer. Simul. 16, 1274 (2011).
${ }^{24}$ D. L. Xu, Z. L. Lin, S. J. Liao, and M. Stiassnie, "On the steady-state fully resonant progressive waves in water of finite depth," J. Fluid Mech. 710, 379 (2012).
${ }^{25}$ Z. Liu and S. J. Liao, "Steady-state resonance of multiple wave interactions in deep water," J. Fluid Mech. 742, 664 (2014).
${ }^{26}$ S. J. Liao, D. Xu, and M. Stiassnie, "On the steady-state nearly resonant waves," J. Fluid Mech. 794, 175 (2016).
${ }^{27}$ Z. Liu, D. L. Xu, and S. J. Liao, "Finite amplitude steady-state wave groups with multiple near resonances in deep water," J. Fluid Mech. 835, 624 (2018).
${ }^{28}$ X. X. Zhong and S. J. Liao, "On the limiting Stokes wave of extreme height in arbitrary water depth," J. Fluid Mech. 843, 653 (2018).
${ }^{29}$ X. Y. Yang, F. Dias, and S. J. Liao, "On the steady-state resonant acoustic-gravity waves," J. Fluid Mech. 849, 111 (2018).
${ }^{30}$ X. X. Zhong and S. J. Liao, "Approximate solutions of Von Kármán plate under uniform pressure-equations in differential form," Stud. Appl. Math. 138, 371 (2017).
${ }^{31}$ X. X. Zhong and S. J. Liao, "Analytic approximations of Von Kármán plate under arbitrary uniform pressure-equations in integral form," Sci. China: Phys., Mech. Astron. 61, 014611 (2018).
${ }^{32}$ D. Xu, J. Cui, S. Liao, and A. Alsaedi, "A ham-based analytic approach for physical models with an infinite number of singularities," Numer. Algorithms 69, 59 (2015).
${ }^{33}$ J. N. Sharma and R. G. Dean, "Second-order directional seas and associated wave forces," Soc. Pet. Eng. J. 21, 129 (1981).
${ }^{34}$ J. Zhang and L. Chen, "General third-order solutions for irregular waves in deep water," J. Eng. Mech. 125, 768 (1999).
${ }^{35}$ P. A. Madsen and D. R. Fuhrman, "Third-order theory for bichromatic bidirectional water waves," J. Fluid Mech. 557, 369 (2006).
${ }^{36}$ Z. Lin, L. Tao, Y. Pu, and A. J. Murphy, "Fully nonlinear solution of bichromatic deep-water waves," Ocean Eng. 91, 290 (2014).
${ }^{37}$ Z. Liu, Z. Lin, and L. Tao, "Mass, momentum, and energy flux conservation for nonlinear wave-wave interaction," Phys. Fluids 28, 127104 (2016).
${ }^{38}$ Z. Liu, D. Xu, and S. Liao, "Mass, momentum, and energy flux conservation between linear and nonlinear steady-state wave groups," Phys. Fluids 29, 127104 (2017).
${ }^{39}$ J. W. S. Rayleigh, "Deep water waves, progressive or stationary, to the third order of approximation," Proc. R. Soc. A 91, 345 (1915).
${ }^{40}$ W. G. Penney and A. Price, "Finite periodic stationary gravity waves in a perfect fluid. Part 2," Philos. Trans. R. Soc., A 244, 254 (1952).
${ }^{41}$ H. Aoki, "Higher order calculation of finite periodic standing wave by means of a computer," J. Phys. Soc. Jpn. 49, 1598 (1980).
${ }^{42}$ I. Tabjbakhsh and J. B. Keller, "Standing surface waves of finite amplitude," J. Fluid Mech. 8, 442 (1960).
${ }^{43}$ L. W. Schwartz and A. K. Whitney, "A semi-analytic solution for non-linear standing waves in deep water," J. Fluid Mech. 107, 147 (1981).
${ }^{44}$ L. Shemer, H. Jiao, E. Kit, and Y. Agnon, "Evolution of a nonlinear wave field along a tank: Experiments and numerical simulations based on the spatial Zakharov equation," J. Fluid Mech. 427, 107 (2001).
${ }^{45}$ Z. G. Tian, M. Perlin, and W. Choi, "Evaluation of a deep-water wave breaking criterion," Phys. Fluids 20, 066604 (2008).
${ }^{46}$ F. Dias and T. J. Bridges, "The numerical computation of freely propagating time-dependent irrotational water waves," Fluid Dyn. Res. 38, 803-830 (2006).
${ }^{47}$ J. W. McLean, "Instabilities of finite-amplitude water waves," J. Fluid Mech. 114, 315-330 (1982).
${ }^{48} \mathrm{M}$. Ioualalen and C. Kharif, "On the subharmonic instabilities of steady threedimensional deep water waves," J. Fluid Mech. 262, 265 (1994).

