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SUMMARY 

In this paper the basic idea of homotopy in topology is applied to give a kind of high-order BEM formulation for 
general non-linear problems governed by non-linear differential operators which need not contain any linear 
operators at all. As a result, the traditional REM for non-linear problems is just a special case of the proposed 
method. Three simple examples are used to show the effectiveness of the proposed quite general BEM for non- 
linear problems. 
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1. INTRODUCTION 

1. I. BEM for linear problems 

Boundary element method was developed initially for solving equations governed by linear differential 
operators as follows: 

i(u) = f(F). 

Selecting a weighting function w ,  the weighted residual expression of (1) is 

Integrating this expression by the divergence theorem, we obtain its inverse form 

where the operator is adjoint operator of i, the operator B is the corresponding  bound^^ operator for 
the operator i and r is the boundary of the domain Q. If we choose the weighting function o in (3) as 
the hdamental solution satisfying the equation 
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we can get the following boundary integral equation for the source point i on the boundary r: 

1.2. Tmditional BEM for non-linear problems and its restrictions 

Although the BEM is in principle based on the linear superposition of fundamental solutions,'-5 many 
researchers&" have applied it to solve non-linear boundary value problems governed by equations of 
the non-linear differential operator 

If the above non-linear differential operator A can be divided into two parts i and fi, i.e. A = i + fi, 
where i is a linear operator and fi is a non-linear one, then equation (6) can be rewritten as 

A(u) =f(P). (6) 

i (u)  =f(r) - fi(u). (7) 
Similarly, we can obtain from ( 5 )  an integral operator equation 

[~h(;) - b k ( ~ ) ] d r  + 
where h is the fundamental solution of the adjoint operator of the linear differential operator i. Note 
that the domain integral of the above equation contains the unknown function u(P), so iterations are 
necessary. 

The basic idea of the above traditional BEM for non-linear problems is to move all non-linear terms 
to the right side of the equation and then find the fundamental solution & of the linear operator i 
remaining on the left side, although it is not always easy to find the fundamental solution 6 if the linear 
operator I! is unfamiliar. This means that the fundamental solution and the corresponding linear 
operator are very important and absolutely necessary for the traditional BEM. However, there 
obviously exists a possibility that there is nothing left after moving all non-linear terms to the right side 
of the equation! In this special case the traditional BEM mentioned above does not work at all. 

We can give a practical example to explain this point. Consider the general 2D steady state heat 
transfer equation 

? ( k , ( T ) g )  ax + $ ( k Z ( T ) E )  = O .  (9) 

If the thermal conductivity coefficients k , ( T )  and kz(T)  are not only dependent on temperature T but 
also differ in directions x and y, i.e. 

k , ( ~ )  = plexlT, k , ( ~ )  = pZeXzT, (10) 
then the above equation does not contain any linear terms on the left side, so the traditional BEM is 
powerless and useless. 

Thus the traditional BEM described above for non-linear problems has the following limitations and 
restrictions. 

I .  Many non-linear differential operators A do not contain any linear operators at all, so A = i + fi 
does not hold. In this case the traditional BEM for non-linear problems is certainly of no use. 

2. Even if the non-linear differential operator A contains a linear operator i, the operator i may be 
too simple for all boundary conditions to be satisfied or it may be so complex that the 
corresponding fundamental solution h is unknown or unfamiliar. The traditional BEM is useless 
in the former case and is difficult to apply in the latter case. 



HIGH-ORDER BEM FORMULATIONS 74 1 

Thus from both theoretical and practical viewpoints it seems necessary to develop a new kind of 

(a) which can be applied to solve equations goverened by a quite general non-linear differential 

(b) which can give us great freedom to select a proper linear operator L that is familiar to us 
(c) which contains the traditional BEM, i.e. the traditional BEM for non-linear problems mentioned 

As a well-known non-linear problem, the Navier-Stokes equations are usually very difficult to solve. 
A boundary element method of solving the steady state Navier-Stokes equations in streamfunction- 
vorticity formulation was presented in Reference 9, based on a set of fundamental solutions providing 
complete coupling between the streamhction and vorticity equations so that iteration is unnecessary 
in the case Re = 0. In Reference 9 the non-linear terms are considered in the traditional way as 
inhomogeneities and treated by simple direct iteration, but this numerical scheme is unstable for 2D 
viscous flow in a square cavity for Reynolds numbers greater than 300. 

The author has been trying to develop a new kind of non-linear technique, the homotopy analysis 
meth046.12.13 by means of the basic ideas of the homotopy technique in topolog~. '~  The advantage of 
the homotopy analysis method is that it does not depend on small parameters, so some restrictions and 
limitations of widely applied perturbation techniques can be overcome. As one example of the 
applications of the homotopy analysis method, the author gave a kind of high-order streamfunction- 
vorticity BEM formulation for the 2D steady state Navier-Stokes equation.6 The corresponding first- 
order formulae are the same as those given in Reference 9 and are also unstable for viscous flow in a 
square cavity for Reynolds numbers greater than 300 (which implies that the traditional BEM is only a 
special case of the proposed BEM), but the higher-order formulae are still stable for cavity flow with 
Re = 2000. The current research' of the author shows that these high-order BEM formulae are still 
stable for viscous cavity flow even in the case Re = lo4, which corresponds to a very strong non- 
linearity. 

This paper is a continuation of the author's work described above. The basic ideas described in 
Reference 6 are greatly generalized and a new, quite general BEM which satisfies the three demands 
(aHc) listed above is proposed. Finally, three simple examples are used to show the effectiveness of 
this general boundary element method. 

BEM for quite general non-lineaer problems 

operator A that may not contain any linear operators i at all 

above should be only a special case of the proposed BEM. 

2. BASIC IDEAS OF THE PROPOSED BEM 

2.1. Treatment of governing equations 

Let A be a quite general non-linear differential operator, no matter whether or not it can be divided into 
a sum of a linear operator and a non-linear one. We consider again equation (6), but remember that A is 
now a quite general differential operator. 

Selecting a proper, familiar linear operator L, we can construct a homotopy v(P, p) : R x [0,1] -+ R 
which satisfies 

where u&) is an initial solution which can be selected with great freedom, p E [0, I]  is an imbedding 
parameter and u(i,p) is now a function of both P E R and p E [0,1]. We call equation (1 1) the zero- 
order deformation equation. 
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Obviously, from equation ( 1  1) the two expressions 

u(F, 0 )  = uo(f), 

v(F, 1) = u(r) (13) 

hold, where U ( F )  is the solution of equation (6). This means that uo(F) and u( i )  are homotopic. 
Assume that the 'continuous deformation' v(F,p) is smooth enough about p so that 

called mth-order deformation derivatives, exist. Then, according to Taylor's formula, we have from 
(12) and (14) that 

where $"(f) is the value of the mth-order deformation derivatives d"](i,p) at p = 0, which can be 
obtained in the way described later. 

The value of the convergence radius p of the Taylor series (1 5 )  is generally finite. When p < 1, we 
obtain 

where 0 < I < p < 1. Note that z(r, i) given by the above expression is mostly a better 
approximation than the initial solution uo(F). In fact, expression (16) gives a family of high-order 
iterative formulae 

where $'(f) (m = 1,2 ,3 ,  . . .) are dependent on uk(i) ,  which can be determined in the way described 
later, and M denotes the order of the iterative formula. 

Differentiating the zero-order deformation equation (1 1) with respect to the imbedding parameter p, 
we obtain the first-order deformation equation 

Similarly, we can obtain the second-order deformation equation by differentiating the first-order 
deformation equation (1 8) with respect to p: 

At p = 0 we have respectively the first- and second-order deformation equations 

t.<Jd'> =f(F) - A(u,), (20) 
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Generally the mth-order deformation equation at p = 0 is in the form 

L(vF1) = f m ( P ) ,  m = 1 , 2 , 3 , .  . . , 
where 

fi(i.1 = f  (4 - A(uo), 

It is very interesting thatfi (P) is the negative residual of the original equation (6) for any freely selected 
linear operator L. 

According to expression (S), the linear boundary value problem (22) can be easily solved by the 
boundary integral equation 

c(i-)vFl(~) = J [ ~ F ] B ( w )  - oB($])]dr + J f m w m ,  (25) r n 

where B is the corresponding boundary operator for the freely selected linear operator L. 
AAer selecting the initial solution u&), the function fm(?) described by (23) or (24) for the domain 

integral is known for each m. Note that we now have very great freedom to select the corresponding 
linear operator L, i.e. we can now select a familiar, proper linear operator L even if the cysidered non- 
linear operator A does not contain any linear operators at all! In particular, when A = L + fi and we 
select L = i as the linear operator, formula (25) in the case of m = 1 ,  combined with formula (17), 
gives the same expression as equation (8). Therefore the three demands (a)-(c) listed in Section 1.2 are 
well satisfied. 

2.2. Treatment of boundary conditions 

boundary condition on r: 
The boundary condition can be treated in a similar way. For simplicity, consider the following 

H(u,  u’) = 0, (26) 

where u’ denotes the first-order derivatives w.r.t. co-ordinates. We construct the same homotopy 4 r . p )  
which satisfies not only equation (1  1) but also the boundary condition 

H(v, 9’) = (1 -p )H(uo ,  ub), p E [O, 11, r E r. (27) 

Differentiating the above equation m times w.r.t. the embedding parameter p and then setting p = 0, we 
obtain the corresponding linear boundary conditions for $”(f) as 

$’I +%I (&:I)’ = hm(r), m = 1 , 2 , 3 , .  . . , 
p=o 

Certainly the linear governing equation (22) with the linear boundary condition (28) can be easily 
solved by the BEM. Note that we do not give any restrictions on the boundary conditions H(u,  u‘). 
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This means that the boundary condition H(u,  u') also may not contain any linear terms. Therefore the 
proposed BEM can even be used to solve those non-linear problems whose governing equations and 
boundary conditions do not contain any linear terms at all! 

3. NUMERICAL EXAMPLES 

3. I .  Example 1 

As the fmt example, let us consider the following non-linear boundary value problem described in 
Reference 10: 

u, = B2u2, x E [O, 11, B > 0, (31) 

with the boundary conditions 

~(0) = 1 and ~ ( 1 )  = 0.25. 

Selecting a familiar linear operator L(u) = u, - B2u, we can construct a homotopy 
u(x;p) : [0, 11 x [0, 11 -+ R as 

v, - B2v = P S 2 ( 3  - 4 + (1 -P)"Uo), - B2uol* x E [O, 11, p E to, 11, (33) 

V(0,p) = 1 and 4 1 , ~ )  = 0.25, p E [0, 11, (34) 

with the corresponding boundary conditions 

where uo(x) is an initial solution which satisfies the boundary conditions (32). For simplicity we select 
here 

uo(x) = (1 + x)-2, (35) 

which is the solution of (31), (32) in the case B =  4 6 ,  as the initial solution for each B. 
Owing to (1 7), the corresponding family of high-order iterative formulae is 

Here, according to (23) and (24), we have 

h ( X )  = 2B2(2uo - l)Vb", 

h(x) = 3B'[2(~&~ + (2u0 - 1)#]], 
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The fundamental solution for the onedimensional modified Helmholtz operator L(u) = u, - b2u has 
been described in Reference 10 as 

e-Bk-Yl 
(42) o(x, y )  = - - . 

28 
Owing to (25), we obtain the boundary integral equation 

Substituting (38) and (42) into the above expression, we have 

where the unknowns a, and b, are the values of ($’I), at x = 0 and x = 1 respectively, which can be 
easily determined by the boundary condition (38) as follows: 

For the sake of the numerical domain integral we divide the domain [0, I] into N equal subdomains, 
where N = 1 O00. The values of 1 used for the different /I2 and the comsponding iteration times for the 
first-, second- and third-order formulae are given in Table I. The convergent results for 

= 10, l@, lo3, lo4, lo5, lo6, lo7 and even lo8 are shown in Figure 1. All these results agret 
very well with those given in Reference 10. It is interesting that the higher the order of the iterative 
formula, the shorter the iteration time. This implies that a higher-order iterative formulation will give a 
faster convergent iterative procedure. Note also that now we just need to solve a set of two linear 
algebraic equations in the two unknowns a, and b,. The boundary integral method for non-linear 
problems described in Reference 10 must solve a set of linear algebraic equations containing 2N 
unknowns, which certainly requires much more CPU time for our case of N = 1O00. Note also that wc 
successfully obtain the convergent results for each f ranging from 10 to lo8 by using the same initial 
solution (1 + x)-~,  which is a very bad guess for large I?’. 

Table I. Numerical parameters and itemtion times for Example 1 

B2 1 Itemtion times 

First-ordcr Second-order Third-order 

10 1 .Ooo 
Id 1mo 
I o3 1 .Ooo 
10‘ 0.900 

lo6 0.500 
lo5 0.750 

lo7 0.250 
10’ 0.125 

3 
14 
46 
85 
104 
127 
144 
119 

2 
8 
28 
62 
81 
105 
124 
96 

2 
6 
20 
51 
71 
98 
118 
88 
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X 

3.2. Example 2 

As the second example, let us consider the non-linear differential equation 

(46) 2 u, - fi2 cos(u2) = 0, x E [O, 11, 

which has the same boundary conditions as (32). 
Note that equation (46) does not contain any linear operators at all. However, we can still choose the 

familiar linear operator L(u) = u, - (x2u which has been used in Example 1 and then construct a 
homotopy. 

x E [o, 11, p E (0, 11, (47) 

V(0,p) = 1 and 61,~) = 0.25. (48) 

u, - a2u = (1 - p)[(u,), - z2uol +pw2 cos(u2) - 1.2, + v, - a2u], 

with the boundary conditions 

Similarly, we can obtain the same high-order iterative formula (36) and the corresponding $”(x) 
satisfies the linear equations 

[ub“l(x)l, - a2vld”’(x) =f&) (49) 

= fi2c0s(ui) - KU0),l2? (50) 

and has the same boundary condtions as (38), where, owing to (23) and (24), we have 

h(x) = 3([1 - 2(u0),](v’~’), - [a2 + 2fi2u0 sin(ui)]uF’ - 2[(u~’),12 - 2fi2[sin(& 

+ 2u; cos(u~) ] (up)2 ) ,  (52) 
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We choose JaJ = Jp and use the following two iterative procedures: 

(A) first using uo(x) = 1 - 0 . 7 5 ~  as the initial solution to obtain the conve ent result for p2 = 10, 

(B) using uo(x) = 1 - 0 . 7 5 ~  as the initial solution for each p2. 
For the sake of the numerical domain integral we also divide the domain [0, 11 into N equal 

subdomains. The iteration times and corresponding numerical parameters 1 for the first-order iterative 
formula in the case of N = 10oO for different values of j12 ranging from 10 to lo8 are given in Table 11. 
The corresponding convergent results are shown in Figure 2. For the same value of p2 we use the Same 
value of 1 for both iterative procedures (A) and (B) described above. Each iterative procedure 
successfully gives the convergent results, although procedure (A) needs a little less iteration time than 
procedure (B), because a better initial solution is used in procedure (A) in each case where j12 > 10. It 
seems that the value of 1 is most important for the convergence of the iterative procedure; mostly, the 
iterative procedure converges if A is selected small enough. It is interesting that even the first-order 
iterative formula can give convergent results for equation (46) governed by a non-linear operator that 
does not contain any linear operators at all! This seems to be a good example to show the effectiveness 
of the proposed new BEM for quite general non-linear differential operators. 

9 then using this new result to obtain the solution for a larger value of 0 and so on 

3.3. Example 3 

As the third example, let us consider the equation 

214, cos(u,) + y(u2 + u,') = y - sin(x) cos[sin(x)l, x E [o, 2x1, y > 0, (53) 

(54) 

( 5 5 )  

with the boundary conditions 
sin@) + cos(uu,) = y/( 1 + y ) ,  x = 0, 

sin(u) + cos(uu,) = y/( 1 + y), x = 2n, 

Note that the governing equation (53) and the boundary conditions (54) and (55 )  do not contain any 
linear terms at all. Defining 

2(u )  = 2u, cos(u,) + y(u2 + Ut), 
f ( x )  = y - sin(x) cos[sin(x)], 

k(u, UJ = sin(u) + cos(uu,) - y/(l  + y),  

(56) 

(57) 

(58 )  

Table 11. Numerical parameters and iteration times for 
Example 2 

1 Iteration times 

Procedure (A) Procedure (B) 

10 
1 o2 
1 o3 
1 o4 
lo5 
1 o6 
10' 
1 o8 

0.25000 
0.06250 
0.02500 
040500 
0~00100 
0.00050 
O~OOO 10 
04)0005 

14 
14 
16 
36 
46 
30 
37 
26 

14 
I5 
18 
39 
51 
33 
44 
29 
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1 .o 

0.0 

- 0  5 

- -1 .o 

-1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.0 0.2 0.4 0.6 0.8 1 .o 

X 

we can construct a homotopy v(x ,p)  : [0,2n] x [0, 11 .+ R as 

44 = P N v )  - ‘34 +7<x>1+ (1 -p)Yuo),  x E [O, 2x1, p E (0, 11, (59)  

with the boundary conditions 

i i (v ,  v,) = (1 - p)H(u,, ub), p E [O, I], x = 0 v x = 2n, (60) 
where L(u) = u, - B2u and the initial solution uo(x) can befieely selected. 

formula 
Certainly we can use the same iterative formula as (36). For simplicity, only the first-order iterative 

U k + , ( X )  = u&) + Jo’l(x)i, 

[Jd’(x)l, - B2Jo’](x) = j ( x )  - ;I[u~(x)], 

x E (0,2n], k = 0, 1 ,2 ,3 ,  . . . (61) 
is used, where $ ’ (x )  is determined by the jirst-order defrmation equation 

x E [ 0 , 2 ~ ] ,  k = 0, 1 , 2 , 3 ,  . . . (62) 
with the boundary conditions 

takJ!b) + ~k[J!’(x)l’)J,=o = -fi[uk(x), u;(x)~I,=~ at x = 0, (63) 

Bk = -uk(x) sin[uk(x)u;(x)], k = 0, 1,2,3,  . . . . (66) 
Note that the governing equation (62) and the two boundary conditions (63) and (64) are linear and can 
be easily solved by the BEM in a similar way as used in Examples 1 and 2. The only difference is that 
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now there exist four unknowns u(O), u,(O), u(2n) and uX(2n), so a set of four linear algebraic equations 
has to be solved. 

We select uo(x) = 0 and b2 = 0.1 for each y in Example 3. For the numerical domain integral we 
also divide [0,2n] into N equal subdomains, where N = 1000. The numerical parameters L and 
corresponding iteration times for different values of y are given in Table 111. The numerical results are 
shown in Figure 3. It should be emphasized that the solution in the case of y = 100 is very close to the 
function 

- sin(x), x E (0, +I. 
x E [n/2,3n/21, 

- sin(2n - x) ,  x E [3n/2/2n], 

which is one of the solutions of equations (53)-(55) in the case where y tends to inhity: 

u2 + u: = 1, x E [O, 2x1, (68) 

sin@) + cos(uu,) = 1, x = 0, (69) 

sin(u) + cos(uu,) = 1, x = 2n. (70) 
Note that equation (68) is only a fist-order non-linear differential equation, which is in principle very 
different from the original non-linear second-order differential equation (53). Thus this example seems 
to be a very good one to indicate the effectiveness of the proposed BEM in solving quite strongly non- 
linear problems. 

Finally, it should be pointed out that there are many different ways to construct a homotopy w.r.t. 
boundary conditions. For example, it is very easy to find an initial solution satisying the two boundary 
conditions u(0) = 1 and u(1) = 0.25 for Examples 1 and 2, so we use homotopies (34) and (48) 
respectively, which imply that uo(0) = 1 and uo(l) = 0.25 must hold. However, it is obviously very 
difficult to find an initial solution satisfying the boundary conditions (54) and (55) of Example 3, so a 
much more general form of homotopy such as expression (60) is applied, which allows us to freely 
select an initial solution uo(x), such as uo(x) = 0 used in Example 3. Therefore we have great fieedom 
to select an initial solution even if the boundary conditions are very complex. This kind of freedom is 
very important, especially for 2D and 3D problems. This is also an advantage of the proposed BEM. 

In each example described above, we use 

as the convergence criterion, where du, denotes the difference of u at xi in iterations, and in this paper 
we use A = for the second and third examples. Using for the first example and A = 

Table 111. Numerical parameters and 
iteration times for Example 3 

Y 1 Iteration times 

0.00 0.50 22 
0.25 0.25 43 
0.50 0.20 52 
0.75 0.15 67 
1.00 0.10 97 
5.00 0.025 295 
100 0~001 1406 
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N = 500, we also obtain convergent results for each example which agree very well with those for 
N = 1000. 

4. DISCUSSION AND CONCLUSIONS 

In this paper we apply the basic ideas of the homotopy analysis m e t h ~ d ' ~ ~ ' ~  to propose a kind of 
general BEM for non-linear problems governed by a quite general non-linear differential operator A,  
where A need not contain any linear operators at all. 

As mentioned in Section 1.2, a proper linear operator and its corresponding fundamental solution 
are very important and absolutely necessary for the traditional BEM. However, for the proposed BEM 
it is not important at all whether or not there exists such a linear operator, because we now have very 
great freedom to select a proper, familar linear operator even if the considered non-linear problem does 
not contain any linear terms at all. Therefore the proposed BEM seems to be quite general and can be 
applied to solve a large number of complex non-linear problems, even including those whose 
governing equations and boundary conditions do not contain any linear terms at all. 

We have also mentioned in Section 1.2 that it is not always easy to find the fundamental solution to 
an unfamilar linear operator. However, the proposed BEM gives us great freedom to select a familar 
linear operator even if we do not know the fundamental solutions of the unfamiliar linear operator of 
the considered problem. 

The third advantage of the proposed BEM is that a quite general computer programme can be 
written for a large number of different sorts of non-linear problems. For example, a quite general 
computer programme has been written by the author for the three quite different non-linear problems 
given in this paper. Thus the proposed BEM provides the possibility of developing a kind of quite 
general software for solving non-linear problems. 
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The fourth advantage of the proposed BEM is that it contains logically the traditional BEM, because 
the traditional BEM is only a special case of the proposed BEM. This kind of continuation in logic has 
been proved again and again to be very important in many mathematical fields. 

Note that the domain integral exists when the proposed BEM is applied to solve non-linear 
problems. However, another kind of powerful BEM technique, the dual reciprocity method,” which 
can take the domain integral to the boundary, has been developing quite quickly. If the dual reciprocity 
method is really powerful even for very complex problems, than a combination of the proposed BEM 
and the dual reciprocity method would perhaps give a kind of very efficient numerical technique for 
solving non-linear problems. 

which has been 
proposed by the author to overcome some limitations and restrictions of the widely applied 
perturbation techniques. The successful application of the homotopy analysis method in numerical 
methods indicates that it seems to be really a powerful tool for solving strongly non-linear problems. 

Although three examples are used to show the effectiveness of the proposed BEM, they seem to be 
too simple. Certainly the proposed BEM must be applied to a large number of complex 2D and 3D 
practical non-linear problems in order to improve and develop it. On the other hand, deeper 
mathematical research should be done. For example, it is true that we now have really much greater 
freedom to select a proper linear operator. However, how can we use this kind of freedom? Certainly all 
properly selected linear operators which can give a convergent iterative procedure construct a 
mathematical space S .  It seems that there should exist the ‘best’ one in this mathematical space S 
which should give the fastest convergent iterative procedure. However, how can we find the best linear 
operator? 

It is certain that deeper mathematical research and more practical applications are necessary in order 
to improve and develop the proposed BEM. 

Note also that this paper is only an application of the homotopy anlaysis 
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