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Laminar three-dimensional flow of nanofluid over a bi-directional stretching sheet is investigated. Convective
boundary conditions are used for the analysis of thermal boundary layer. Mathematical model containing the
combined effects of Brownian motion and thermophoretic diffusion of nanoparticles is adopted. The formulated
differential system is solved numerically using a shooting method with fourth–fifth-order Runge–Kutta integra-
tion technique. The solutions depend on various interesting parameters including velocity ratio parameter (λ),
Brownian motion parameter (Nb), thermophoresis parameter (Nt), Prandtl number (Pr), Lewis number (Le)
and the Biot number (γ). It is noticed that fields are largely influenced with the variations of these parameters.
The results are compared with the existing studies for the two-dimensional flows and found in an excellent
agreement. The study reveals that nanoparticles in the base fluid offer a potential in improving the convective
heat transfer performance of various liquids.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The nanofluids in view of the extraordinary thermal conductivity
enhancement have been recognized useful in several industrial and en-
gineering applications. One of the technological applications of nano-
particles that hold enormous promise is the use of heat transfer fluids
containing suspensions of nanoparticles to confront cooling problems
in the thermal systems. Solar power is a direct way of obtaining heat,
water and electricity from the nature. Researchers concluded that heat
transfer and solar collection processes can be improved through the ad-
dition of nanoparticles in the fluids. Use of nanofluids as coolants would
allow for smaller size and better positioning of the radiators which
eventually consumes less energy for overcoming resistance on the
road. Nanoparticles in refrigerant/lubricant mixtures could enable a
cost effective technology for improving the efficiency of chillers that
cool large buildings. Also the classical heat transfer fluids such as ethyl-
ene glycol, water and engine oil have limited heat transfer capabilities
due to their low thermal conductivity and thus cannot congregate
withmodern cooling requirements. On the other hand thermal conduc-
tivity of metals is extremely higher in comparison to the conventional
heat transfer fluids. Masuda et al. [1] explored the variations in the ther-
mal conductivities and viscosities of liquids through the dispersion of
tics, Quaid-I-Azam University,
2.

ghts reserved.
ultra-fine particles in the base fluids. Choi and Eastman [2] combined
the conventional heat transfer fluids with nanometer sized metallic
particles and observed a significant increase in the thermal conductivity
of the resulting liquid whichwas termed as nanofluid. In another paper,
Eastman et al. [3] discussed an abnormal increase in the thermal
conductivity of ethylene glycol based nanofluids.

Buongiorno [4] studied the convective transport phenomena in
nanofluids and concluded that out of the seven slip mechanisms only
Brownian motion and thermophoretic diffusion of nanoparticles con-
tribute to the massive increase in the absolute thermal conductivity of
the liquids. He also developed a mathematical model for nanofluid
flow which incorporates the simultaneous effects of Brownian motion
and thermophoretic diffusion of nanoparticles. Kuznetsov and Nield
[5] investigated the natural convective boundary-layer flow of a
nanofluid past a vertical flat plate using Buongiorno's model. Cheng–
Minkowycz problem for natural convection flowof nanofluid past a ver-
tical plate embedded in a porous medium was studied by Nield and
Kuznetsov [6]. The two-dimensional flow of nanofluid over a linearly
stretching sheet was conducted by Khan and Pop [7]. They computed
the numerical solutions of the developed differential system by Keller-
box and provided a detailed analysis of Brownian motion and
thermophoresis effects on the heat transfer characteristics. Makinde
and Aziz [8] extended this work by considering convective boundary
conditions. They showed that strength of convective heating has a
significant impact on the thermal boundary layer. Rana and Bhargava
[9] provided finite element solutions for two-dimensional flow of
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Fig. 1. Physical configuration and coordinate system.
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nanofluid over a nonlinearly stretching sheet. Mustafa et al. [10]
discussed stagnation-point flow of nanofluid towards a stretching
surface by homotopy analysismethod (HAM). In another paperMustafa
et al. [11] investigated the unsteady boundary layer flow of nanofluid
past a stretching sheet. Flow of an electrically conducting nanofluid
past a stretching cylinder was analyzed by Ashorynejad et al. [12].
Stagnation-point flow of nanofluid over a linearly stretching/shrinking
surface was considered by Yacob et al. [13]. They have shown the exis-
tence of dual solutions in the case of shrinking sheet. Effect of internal
heat generation on the nanofluid flow over a permeable stretching
sheet was addressed by Hamad and Ferdows [14]. Free convective
flow of nanofluid past a vertical flat surface with Newtonian heating
boundary conditions was explored by Uddin et al. [15]. Khan and Pop
[16] numerically investigated the forced convection flow of nanofluid
through a porous medium using Brinkman–Forchheimer model. Nu-
merical and analytic solutions for stagnation-point flow of nanofluid
past an exponentially stretching sheet were provided by Mustafa et al.
[17]. Stagnation-point flow of nanofluid past flat vertical plate with
convective boundary conditions was examined by Makinde et al. [18].
MHD natural convection flow of nanofluid in a cavity is addressed by
Sheikholeslami et al. [19]. Turkyilmazoglu and Pop [20] analyzed un-
steady natural convection flow of nanofluid past a vertical infinite
plate. MHD flow of nanofluid due to a rotating disk is studied by Rashidi
et al. [21]. Nadeem andHaq [22] explored theMHDboundary layerflow
over a permeable stretching sheet in the presence of nanoparticles.
Table 1
Comparison of values of reduced Nusselt number –θ'(0) with the previous studies when Nb =

Pr Khan and Pop [7] Makinde and Aziz [8] Gorla

0.07 0.0663 0.0656 0.065
0.20 0.1691 0.1691 0.169
0.70 0.4539 0.4539 0.534
2.00 0.9113 0.9114 0.911
7.00 1.8954 1.8954 1.890
20.00 3.3539 3.3539 3.353
70.00 6.4621 6.4622 6.462

Table 2
Comparison of values of the reduced Nusselt number –θ'(0) with Makinde and Aziz [8] with Le

Nt Nur (Nb = 0.1) Nur (Nb = 0.2) N

0.1 0.092907 (0.0929) 0.087332 (0.0873) 0.
0.2 0.092732 (0.0927) 0.086762 (0.0868) 0.
0.3 0.092545 (0.0925) 0.086119 (0.0861) 0.
0.4 0.092344 (0.0923) 0.085385 (0.0854) 0.
0.5 0.092126 (0.0921) 0.084538 (0.0845) 0.
Thermal radiation and viscous dissipation effects on the unsteady
boundary layer flowof nanofluid over a stretching sheetwere presented
by Khan et al. [23]. Effect of solar energy radiation on the unsteady
boundary layer flow of nanofluid past a wedge was discussed by
Mohamad et al. [24]. They concluded that presence of nanoparticles in
the base fluids allows deeper penetration of radiations. Sheikholeslami
et al. [25] carried out an investigation to provide an application of LBM
in simulation of natural convection nanofluid. The fluid fills the square
cavity which has curve boundaries. Unsteady squeezing flow of
nanofluid by ADM was investigated by Sheikholeslami et al. [26].
Turkyilmazoglu [27] provided both exact and analytical solutions for hy-
dromagnetic flow of nanofluid with slip condition. In another investiga-
tion, Turkyilmazoglu [28] discussed the unsteady flow of nanofluid
passing through a vertical plate.

The study of heat transfer in the boundary layer flows due to station-
ary or moving surface has relevance in various industrial applications.
The seminal work on the laminar boundary flow over a flat plate at
zero incidence in a quiescent ambient fluid with uniform free stream
was reported by Blasius [29]. He provided an analytic solution of the
problem in the power series form. The numerical solution to the Blasius
problem was computed by Howarth [30]. In contrast to [29], the flow
over a continuously moving plate was considered by Sakiadis [31].
Crane [32] extended this idea for a stretching sheet and provided an
exact solution for the velocity distribution. The flow over a stretching
sheet is involved in the extrusion process, fabrication of plastic, rubber
and metallic sheets, glass and fiber production, wire drawing, hot
rolling, melt spinning, transportation etc. In view of such applications,
the Crane's problemhas been extensively considered by the researchers
even for the three-dimensional flows over a bi-directional stretching
sheet. The seminal research in this direction was conducted by Wang
[33]. He had also shown that classical problems of two-dimensional
and axisymmetric flows due to stretching sheet can be easily recovered
from his work. Unsteady three-dimensional flow past an impulsively
stretching surface was analyzed by Lakshmisha et al. [34]. Series solu-
tions for three-dimensional flow of an electrically conducting viscous
fluidwere provided by Xu et al. [35]. Sajid et al. [36] also derived analyt-
ic solutions for three-dimensional flow of elasto-viscous fluid over a
stretching sheet. Liu and Andersson [37] numerically investigated the
heat transfer characteristics over a bi-directional stretching sheet with
variable wall temperature. Laminar three-dimensional flow of viscous
fluid filling a porous space with heat and mass transfer was addressed
by Hayat et al. [38]. The analytic solutions for three-dimensional flows
of non-Newtonian fluids over a stretching sheet have been reported
by Hayat et al. [39,40]. Recently Liu et al. [41] provided an interesting
Nt = 0, λ= 0, γ = 1000.

and Sidawi [42] Present (bvp4c) Present (shooting method)

6 0.06562 0.06562
1 0.16909 0.16909
9 0.45392 0.45392
4 0.91136 0.91136
5 1.89542 1.89542
9 3.35394 3.35391
2 6.46231 6.46220

= Pr = 10, γ = 0.1, λ= 0.

ur (Nb = 0.3) Nur (Nb = 0.4) Nur (Nb = 0.5)

076878 (0.0769) 0.059665 (0.0597) 0.038325 (0.0383)
075082 (0.0751) 0.055349 (0.0553) 0.032498 (0.0325)
072917 (0.0729) 0.050269 (0.0503) 0.026905 (0.0269)
070265 (0.0703) 0.044558 (0.0445) 0.022010 (0.0220)
066974 (0.0700) 0.038620 (0.0386) 0.018035 (0.0180)
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study on the three-dimensional flow and heat transfer over an expo-
nentially stretching surface. In this work the wall temperature was
also assumed to be of the exponential form.

To the best of our information, there is not a single article that
considers the three-dimensional flow of nanofluid due a stationary
or moving surface. The present work therefore describes the three-
dimensional flow of nanofluid over a sheet which is stretched in two-
lateral directions. Further the thermal boundary layer analysis is
performed in the presence of convective boundary conditions. The
developed nonlinear differential system has been solved numerically
by shooting method with fourth–fifth order Runge–Kutta (RK45) inte-
gration technique. A comparative study of present results and the previ-
ously published ones in case of two-dimensional flow is presented. The
results clearly indicate that nanoparticles in the base fluid can sufficient-
ly improve the convective heat transfer performance.

2. Problem formulation

Let us consider the three-dimensional incompressible boundary
layer flow of nanofluid over a convectively heated sheet located along
the xy-plane and z-axis is chosen normal to the surface. The sheet is
stretched in two lateral directions by keeping the origin fixed. The
velocities of the sheet along x‐ and y‐directions are respectively
Uw(x) = ax and Vw(y) = by (see Fig. 1). Impacts of Brownian motion
and thermophoretic diffusion of nanoparticles are considered in the
transport equations. Tf denotes the convective surface temperature
while T∞ is the ambient fluid's temperature. The concentration of
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Fig. 3. Effect of λ on g′.
nanoparticles at the sheet is denoted by Cw whereas C∞ is the ambient
concentration. Under the usual boundary layer assumptions, the equa-
tions governing the conservations of mass, momentum, energy and
nanoparticles diffusion are

∂u
∂x þ

∂v
∂yþ

∂w
∂z ¼ 0; ð1Þ

u
∂u
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∂u
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; ð2Þ
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where u, v andw are the velocity components along x, y and z‐directions,
ν is the kinematic viscosity, T is thefluid's temperature, C is the nanopar-
ticle concentration, α is the thermal diffusivity,DB is the Brownian diffu-
sion coefficient, DT is the thermophoretic diffusion coefficient and τ(=
(ρC)p/(ρC)f) is the ratio of the effective heat capacity of the nanoparticle
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material to the effective heat capacity of the base fluid. The boundary
conditions for the considered problem are

u ¼ Uw xð Þ ¼ ax; v ¼ Vw yð Þ ¼ by;w ¼ 0;−k
∂T
∂z ¼ h T f−T

� �
;C

¼ Cw at z ¼ 0; ð6Þ

u ¼ 0; v ¼ 0; T→T∞;C→C∞ as z→∞; ð7Þ

inwhich k is the thermal conductivity and h is the convective heat trans-
fer coefficient. Using the following dimensionless variables

η ¼
ffiffiffi
a
ν

r
z;u ¼ axf ′ ηð Þ; v ¼ ayg′ ηð Þ;w ¼ −

ffiffiffiffiffiffi
νa

p
f þ gð Þ; ð8Þ

θ ηð Þ ¼ T−T∞
T f−T∞

;ϕ ηð Þ ¼ C−C∞
Cw−C∞

: ð9Þ

Eq. (1) is identically satisfied and Eqs. (2)–(7) become

f ‴ ¼ − f þ gð Þ f ″ þ f ′
2
; ð10Þ

g‴ ¼ − f þ gð Þg″ þ g′
2
; ð11Þ

θ″ ¼ −Pr f þ gð Þθ′−PrNbϕ
′θ′−PrNtθ

′2
; ð12Þ

ϕ″ ¼ −Le f þ gð Þϕ′− Nt

Nb
θ″; ð13Þ
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f 0ð Þ ¼ g 0ð Þ ¼ 0; f
0
0ð Þ ¼ 1; g

0
0ð Þ ¼ λ; θ

0
0ð Þ ¼ −γ 1−θ 0ð Þ½ �;ϕ 0ð Þ

¼ 1; ð14Þ

f ′ ∞ð Þ ¼ g
0
∞ð Þ ¼ 0; θ þ∞ð Þ→0;ϕ þ∞ð Þ→0; ð15Þ

where λ= b/a is ratio of rates,γ ¼ h
k

ffiffiffi
ν
a

q
is the Biot number,Nb= τDB(Cw

− C∞)/ν is the Brownian motion parameter, Nt = τDT(Tw − T∞)/T∞ν is
the thermophoresis parameter, Pr ¼ ν

α is the Prandtl number and Le ¼
ν
DB

is the Lewis number.
With the help of local Nusselt numberNux ¼ xqw

k Tw−T∞ð Þ and local Sher-
wood number Sh ¼ x jw

DB Cw−C∞ð Þ one obtains

Nuxffiffiffiffiffiffiffiffi
Rex

p ¼ −θ
0
0ð Þ ¼ Nur;

Shffiffiffiffiffiffiffiffi
Rex

p ¼ −ϕ
0
0ð Þ ¼ Shr; ð16Þ

where Rex=Uw(x)/ν is the local Reynolds number and qw and jw are the
wall heat and mass fluxes, respectively.

3. Numerical method

The dimensionless momentum, energy and concentration
(Eqs. (10)–(13)) with the boundary conditions (Eqs. (14) and (15))
have been solved numerically by shooting method with fourth–fifth
order Runge–Kutta (RK45) integration technique. First we reduce the
original ODEs into a system of 1st order ODEs by setting x1 = f, x2 = f′,
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x3 = f″, x4 = g, x5 = g′, x6 = g″, x7 = θ, x8 = θ′, x9 = ϕ and x10 = ϕ′
which gives
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and the corresponding initial conditions are
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The set of Eq. (17) subject to the initial conditions (Eq. (18)) are
solved using RK45 method. Suitable values of the unknown initial
conditions u1, u2, u3 and u4 are approximated and optimized through
Newton method until the boundary conditions at infinity (given in
Eq. (15)) are satisfied. The computations have been done by using
MATLAB. The maximum value of η∞, to each group of parameters is
determined when the values of unknown boundary conditions at η =
0 do not change to a successful loop with error less than 10−6.

4. Results and discussion

To validate the solutions we have compared the values of −θ′(0)
and −ϕ′(0) with those obtained by Khan and Pop [7], Makinde and
Aziz [8] and Gorla and Sidawi [42] for the two-dimensional case (λ =
0) (see Tables 1 and 2). It is witnessed that solutions are in very good
agreement for all the considered values of parameters. Figs. 2 and 3
show the velocity profiles for different values of ratio λ. It is quite obvi-
ous that increase in λ corresponds to either increase in the sheet veloc-
ity along y‐direction or its decrease in the x‐direction. Thus one would
expect a decrease in the x‐component of velocity and an increase in
the y‐component of velocity with an increase in λ. Fig. 4 shows the be-
haviors of Brownianmotion and thermophoresis effects on the temper-
ature distribution θ. Brownian motion takes place due to the size of
nanoparticles which is of nanoscale and at this level the particle motion
has a strong influence on the heat transfer. An increase in Nb leads to an
increase in the nanoparticle motion and consequently the kinetic ener-
gy of these nanoparticles increase. The nanofluid's temperature is there-
fore an increasing function of Nb. Temperature θ also increases when Nt
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is increased for any chosen value ofNb. It is also seen that variation in the
thermal boundary layer becomes pronounced as Brownian motion
effect intensifies. Fig. 5 is prepared to see the variations in the tempera-
ture distribution with an increase in the Prandtl number Pr for different
values of Lewis number Le. Prandtl number is defined as the ratio ofmo-
mentum diffusivity to thermal diffusivity. Thus smaller values of Pr(b1)
correspond to the fluids which are highly conducive but have low vis-
cosity such as air and other gases. On the other hand the fluids such as
water, engine oils, and ethylene glycol have low thermal conductivity
and therefore these are characterized by large values of Pr(N1). As ex-
pected the thermal boundary layer thins and the temperature profiles
become steeper when Pr is increased. Thus decrease in the thermal
boundary layer with an increase in Pr accompanies with the larger
rate of heat transfer at the sheet. It is also found that variation in the
Lewis number Le only affects the temperature distribution closer to
the stretching sheet (which is in accordance with Makinde and Aziz
[8]). The impact of convective heating on the thermal boundary layer
is seen in Fig. 6. It is evident that increase in the Biot number γ corre-
sponds to a stronger convective heating at the sheet which allows a
deeper penetration of thermal effect in the quiescent fluid. As a conse-
quence the temperature increases and thermal boundary layer becomes
thicker with an increase in γ. The results for constant wall temperature
case (θ(0)=1) (obtained by assuming sufficiently large values of γ) are
also given. Variations in the temperature profiles are almost similar for
all the considered values of λ. However temperature θ decreaseswith an
increase in λ.

The combined influence of Brownian motion and thermophoresis
effects on the concentration ϕ is depicted in Fig. 7. An increase in Nt
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Fig. 15. Effects of Pr and Le on Shr for different values of γ.
corresponds to an increase in the nanoparticle concentration and a de-
crease in the wall slope of the concentration ϕ. This outcome is only
true for smaller Lewis number for which the Brownian diffusion effect
is large compared to convection. However for large Lewis number
(Le = 1000), an increase in the thermophoretic effect would limit
the penetration depth for concentration boundary layer. For smaller
Brownian motion the profiles become steeper when Nt is increased
whereas opposite trend is accounted for a stronger Brownian motion.
Fig. 8 illustrates that increase in Le accompanies with the weaker
Brownian diffusion coefficient DB and shorter penetration depth for
concentration boundary layer. The pattern for nanoparticle volume
fraction is almost similar for all the considered values of Pr. Influence
of Biot number γ on the concentration ϕ is anticipated in Fig. 9. It is
alreadywitnessed fromFig. 6 that temperature θ riseswhen the convec-
tive heating at the sheet is enhanced. The concentration field ϕ, being
driven by the temperature field, therefore increases with an increase
in γ.

Figs. 10–13 are sketched to perceive the effects of different parame-
ters on the reducedNusselt numberNur.We earlier noticed in Fig. 4 that
profiles become flat near the stretching wall when Nb changes from 0.1
to 0.3 revealing a decrement in the initial slopes. The variation in the
wall temperature gradient |θ′(0)| with Nb and Nt becomes prominent
as the convective surface heating is increased (see Fig. 10). It is observed
that wall temperature gradient |θ′(0)| decreases with an increase in Nt

for a weaker Brownianmotion. This decrease becomesmuch significant
when Nb changes from 0.1 to 0.5. This is because strengthened
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Fig. 17. Effects of Pr and Le on Shr for different values of λ.
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Brownian motion corresponds to the intense motion of nanoparticles
which are driven from the stretching wall to the quiescent fluid. It can
also be seen that reduced Sherwood number Shr is inversely propor-
tional to the thermophoresis parameter Nt. This is due to the fact that
hot stretching sheet repels the ultra-fine particles from it, thereby
forming a particle-free layer near the surface. Fig. 11 plots the wall tem-
perature gradient versus Le for different values of Pr. The variations in
|θ′(0)| with Le are only significant in case of a smaller Prandtl number
fluid. A decrease in the thermal boundary layer thickness with an in-
crease in Pr meets with the larger heat transfer rate near the sheet. It
is also indicated that variations in Nurwith Nb, Nt, Pr and Le are similar
for two-dimensional, three-dimensional and axisymmetric flows.
Figs. 14–17 show the plots for wall concentration gradient |ϕ′(0)| for
the data given in Figs. 10–13. It is revealed that wall mass flux is signif-
icantly influenced by the variation of parameters in case of strong
convective heating. Moreover the obtained results are in accordance
with Makinde and Aziz [8] for the two-dimensional flow.

5. Conclusions

Three-dimensional flow with nanoparticles over a bi-directional
stretching sheet is studied in the presence of convective boundary
conditions. The resulting differential system is solved for the numerical
solutions by Runge–Kutta method using a shooting technique. The key
points of this work are as under:

a. The x‐component of velocity f′ is an increasing function of λ. Howev-
er y‐component of velocity g′ increases when λ is increased.

b. Increasing values of Pr corresponds to a decrease in the thermal
diffusivity and thinner boundary layer. The thermal boundary layer
decreases. The decrease in the thermal boundary layer is compen-
sated with an increase in the rate of heat transfer at the stretching
sheet. The Lewis number Le has a negligible impact on the thermal
boundary layer.

c. Intensification in the Brownian motion and thermophoresis effects
enhances the temperature and thermal boundary layer thickness.
Whereas the nanoparticle volume fraction is found to decrease
upon increasing the Brownian motion parameter.

d. The dimensionless wall temperature and concentration gradients
are greater in the three-dimensional flow when compared with
the two-dimensional flow case.

e. The obtained solutions are in excellent agreement with Khan and
Pop [7], Gorla and Sidawi [42] and Makinde and Aziz [8] for two-
dimensional flow (λ = 0) with constant wall temperature case
(θ(0) = 1).
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