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This paper focuses on the theoretical treatment of the laminar, incompressible, and time-dependent
flow of a viscous fluid in a porous channel with orthogonally moving walls. Assuming uniform
injection or suction at the porous walls, two cases are considered for which the opposing walls
undergo either uniform or nonuniform motions. For the first case, we follow Dauenhauer and
Majdalani [Phys. Fluids 15, 1485 (2003)] by taking the wall expansion ratio « to be time invariant
and then proceed to reduce the Navier—Stokes equations into a fourth order ordinary differential
equation with four boundary conditions. Using the homotopy analysis method (HAM), an optimized
analytical procedure is developed that enables us to obtain highly accurate series approximations for
each of the multiple solutions associated with this problem. By exploring wide ranges of the control
parameters, our procedure allows us to identify dual or triple solutions that correspond to those
reported by Zaturska et al. [Fluid Dyn. Res. 4, 151 (1988)]. Specifically, two new profiles are
captured that are complementary to the type I solutions explored by Dauenhauer and Majdalani. In
comparison to the type I motion, the so-called types II and III profiles involve steeper flow turning
streamline curvatures and internal flow recirculation. The second and more general case that we
consider allows the wall expansion ratio to vary with time. Under this assumption, the Navier—
Stokes equations are transformed into an exact nonlinear partial differential equation that is solved
analytically using the HAM procedure. In the process, both algebraic and exponential models are
considered to describe the evolution of «(r) from an initial « to a final state «. In either case, we
find the time-dependent solutions to decay very rapidly to the extent of recovering the steady state
behavior associated with the use of a constant wall expansion ratio. We then conclude that the
time-dependent variation of the wall expansion ratio plays a secondary role that may be justifiably

ignored. © 2010 American Institute of Physics. [doi:10.1063/1.3392770]

I. INTRODUCTION

Studies of laminar motions through porous channels
continue to receive attention in the fluid and mathematical
communities due to their interesting connections with a va-
riety of applications. These include binary gas diffusion, fil-
tration, ablation cooling, surface sublimation, and the mod-
eling of air circulation in the respiratory system. Berman'
initiated the analysis of the steady laminar flow of a viscous
incompressible fluid in a two-dimensional porous channel
with uniform injection or suction. With the assumption that
the transverse velocity component remained independent of
the streamwise coordinate, Berman reduced the Navier—
Stokes equations to a nonlinear ordinary differential equation
(ODE) with appropriate boundary conditions. He then pro-
ceeded to construct an asymptotic approximation for a small
Reynolds number R using a regular perturbation scheme.
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Extensions to Berman’s solution' followed shortly there-
after. For example, Terrill® obtained series solutions for both
small and large values of R that compared favorably with the
numerical solutions to this problem. Using the method of
averages, Morduchow® presented a solution which covered
the entire injection range. Later, White et al’ derived a
power series expansion that appeared to retain its validity for
arbitrary R. However, their solution required the numerical
calculation of numerous power series coefficients that could
not be tied recursively. Other studies devoted to the analysis
of the symmetrically porous channel flow problem were re-
ported by a diverse group of investigators. To list a few, one
may enumerate Sellars,5 Shrestha,6 Robinson,7 Skalak and
Wang,8 Brady,g Durlofsky and Brady,lo Zaturska et al.,11
Taylor,12 and Yuan."

Following this string of investigations, at least two
prominent categories of flow variations emerged, thus creat-
ing new tracks for sustained research inquiry. The attendant
motions incorporated either asymmetries in the mean flow
configuration or translational movement of the boundaries.
The class of asymmetrical flows could be achieved, for ex-
ample, by imposing different wall suction rates, as in the
case examined by Proudman'® under steady laminar condi-
tions and large Reynolds numbers. The flow analog at small
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R was equally investigated by Terrill and Shrestha."
Shrestha and Terrill'® also provided accurate series solutions
for large wall injection using the method of inner and outer
expansions.

The problem comprising moving boundaries appears to
have been initiated by Brady and Acrivos.'” These research-
ers obtained an exact solution to the Navier—Stokes
equations for the flow in a channel with an accelerating sur-
face velocity. Their work was revisited in the context of a
moving porous wall by Watson et al."® Watson ef al." then
combined asymmetry with wall movement in their analysis
of the two-dimensional porous channel. Along similar lines,
Dauenhauer and Majdalani20 presented a new similarity so-
lution for the laminar, incompressible, and time-dependent
Navier—Stokes equations in the context of a porous channel
with expanding or contracting walls. Assuming a constant (or
quasiconstant) wall expansion ratio «, they reduced the
Navier—Stokes equations into a self-similar ODE that could
be solved numerically. Their approach employed Runge—
Kutta integration coupled with a rapidly converging shooting
technique to cover a modest range of R and wall expansion
ratios. Asymptotic solutions for the problem were later pro-
vided by Majdalani and Zhou?' for moderate-to-large R and
by Majdalani et al.** for small R. The solution in the context
of rocket propulsion is also discussed by Zhou and
Majdalani.23 As for the stability of these flows, this vital
topic was originally addressed by Zaturska et al.,M although
several illuminating investigations have been carried out by
MacGillivray and Lu,24 Lu,25 and Cox and King,26 to name
a few.

In this paper, we revisit the porous channel flow problem
with regressing walls and solve it using a series expansion
approach known as the homotopy analysis method (HAM).
This method was developed by Liao” ! as an improvement
over the Adomian decomposition framework. In this context,
it was developed for the purpose of obtaining series solutions
to strongly nonlinear differential equations. Its implementa-
tion involves the introduction of an embedding parameter g
that permits converting the nonlinear governing equation into
a linear equation for g=0. As ¢ is increased, homotopy en-
sures that the original nonlinear equation is recovered in the
limit of ¢g— 1. As discussed in several articles,n_39 HAM has
been shown to exhibit several distinct advantages over other
asymptotic techniques. For example, HAM provides a con-
venient control parameter 7 that helps to ensure series
convergence.zg_31 HAM can also be applied with equal level
of ease to nonlinear ODEs and partial differential equations
(PDEs). This makes it an ideal approach for handling the
Dauenhauer—Majdalani PDE considered in this study.

To set the stage, we first revisit the exact similarity equa-
tion rendered by Dauenhauer and Majdalani20 for the porous
channel flow. Given that these investigators were mainly in-
terested in the type I injection and suction solutions that
pertained to their application, our analysis will seek to un-
ravel not only the classical type I, but other possible solu-
tions that have been classified as types II and III by Zaturska
et al."! To this end, an optimal HAM-based approach will be
developed with the capability of capturing multiple solu-
tions. This will enable us to obtain multiple solutions under

Phys. Fluids 22, 053601 (2010)

da/dt
¢ Expanding or Contracting Porous Wall

FIG. 1. Coordinate system and characteristic streamlines used to describe
the fluid flow pattern.

suction dominated conditions that have not been discussed
before. By way of verification, our series approximations
will be shown to agree substantially well with the numeri-
cally integrated solution described by Dauenhauer and
Majdalani.”

In seeking further generalization, the Dauenhauer—
Majdalani model®® will be extended to the case for which the
wall expansion ratio « is no longer constant, but rather a
time-dependent variable that transitions from «; to «;. The
corresponding similarity equation is readily turned into a
nonlinear PDE that can be solved analytically. While it
would be helpful to consider a case for which the channel
half-height a varies from an initial value a to a final a;, such
a situation may be considered to be a special case of the
model used here. For example, knowing the initial and final
heights, one can calculate the average expansion ratio using,
for example, d= (a,—ay)/(t;—1,), where t;—1, represents the
time for expansion. Then knowing ¢, one can calculate «
=day/ v and «;=da,/ v, where v is the kinematic viscosity.

The basic equations for the channel flow problem with
both constant and time-dependent wall expansion ratios are
described in Sec. II. In Sec. III, a conventional HAM ap-
proach is implemented for the purpose of capturing one of
the multiple solutions. This is followed by the presentation of
an optimal HAM-based approach that can be used to identify
any number of solutions: single, dual, or triple solutions for
the case of a constant wall expansion ratio. Therein, results
are described and verified through comparisons to the nu-
merical results obtained from the use of the Dauenhauer—
Majdalani shooting approach.20 In Sec. IV, a HAM-based
approach is advanced for the case of a time-dependent wall
expansion ratio. Finally, closing remarks and conclusions are
given in Sec. V.

Il. MATHEMATICAL DESCRIPTION
A. Basic equations

As shown in Fig. 1, the flow to be studied takes place in
a two-dimensional rectangular channel bounded by porous
walls at y=*a. The walls of the channel undergo either
uniform or nonuniform expansion or contraction in the trans-
verse direction. Through the two opposing walls fluid is uni-
formly injected or extracted at a constant speed v,,. The gov-
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erning equations describing the unsteady flow of an
incompressible fluid for mass and momentum conservation
are

du Jdv

Lo, ()

ox dy

du du du 1dp Pu  Fu

—tu_—Hv = +v 5+, (2)
ox dy p ox ox=  dy

v Jdu Jdv 1dp Pv v

—Hu—+v _—=——+v S+ 5| (3)

at ox dy pdy dx=  dy

These are subject to the following boundary conditions:

u=0, v=-v,; y=a(), (4)

du

—=0, v=0; y=0, (5)

dy

u=0, v=0; x=0, (6)

where Cartesian coordinates (x,y) that are fixed in space are
taken, with the x-axis extending along the length of the chan-
nel and the y-axis in the wall-normal direction. Here u and v
denote the velocity components along x- and y-axes, and p,
p, v, t, and v,, correspond to the dimensional density, pres-
sure, kinematic viscosity, time, and (crossflow) injection ve-
locity at the wall. Note that Eqs. (4)—(6) are written in the
upper half-domain (y=0), thus taking into account symme-
try with respect to the midsection plane while assuming an
odd function for the wall normal velocity v and an even
function for the axial velocity u.

Using ¢ to denote a stream function such that u
=dY/ dy and v=-3di/ dx, the continuity equation is automati-
cally satisfied and the vorticity transport equation is readily
obtained by taking the curl of the momentum equation. One
gets

T I (ﬁzé &2§>
—tu_—+v_—=v 5+ (7)
ot ox dy ox=  dy
where
_v o »
{=- oy~ Vo (8)

Substituting the dual transformations’

y=(wxla)F(n,1), m=yla )
into the vorticity transportation equation gives
2 -
[F,yy+ FF,,+ F,(2a~F,) + anF,,—(a*/v)F,],=0,
(10)

nnn

which is subject to the four classical boundary conditions

{77:0: F=0, F,,=0,

11
n=1:. F=R, F,=0. ()

Equation (10) describes the unsteady flow of an incompress-
ible fluid in a porous channel. It is presented by White® as
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one of the new exact Navier—Stokes solutions attributed to
Dauenhauer and Majdalani.20 Here,

a=dalv (12)

is the wall expansion ratio in which a and d represent the
half-height of the channel and its expansion speed; as before,
v is the kinematic viscosity and so R=v,a/v=Aa defines the
crossflow Reynolds number, with A being the injection coef-
ficient. Note that according to our sign convention, a positive
R refers to injection conditions. More detail is given by
Dauenhauer and Majdalan120 where these steps are system-
atically developed.

B. Equation for uniform wall expansion

When the wall expansion ratio « is constant in time, the
function F becomes dependent on 7 and « instead of (7,1).
One can put F,,=0 and write

a=dalv=agaylv, (13)

where a; and d are the initial channel height and expansion
rate, respectively. Integrating Eq. (13) with respect to ¢ yields

alag=(1 +2vata52)”2. (14)

Moreover, given a constant injection coefficient A, one can
put

alay=v,,(t)/v,,(0)=(1+ 2vata62)_”2. (15)

As shown by Dauenhauer and Majdalani,20 an exact self-
similarity equation emerges for Berman’s main characteristic
function F. After some algebra, one retrieves

Frpon+ FFpp+ Fo(3a—F,) + anF

0, (16)

=
with

n=0: F=0, F,,=0;

. F=R, F,=0,

(17)

n=1:

where F denotes a sole function of 7. For more detail on the
mathematical foundations of Egs. (16) and (17), the reader is
referred to Dauenhauer and Majdalani.20

C. Equation for nonuniform wall expansion

Another practical setting corresponds to the case for
which the wall expansion ratio « is not restricted to a con-
stant, but is rather permitted to vary as a function of ¢,
namely, from «a; to «;. Letting

2

BH=", (18)
14
it follows that
a(t)=dalv= %ﬁ,(t). (19)
Then taking into account Eq. (12), we can put
ao(r) = a(0) = dgag/v= 3 B,(0). (20)

If we now consider the hypothetical case for which the in-
jection coefficient A is inversely proportional to a(r), Eq.
(10) can be reduced to
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Fopon+ at)(9F,, +3F, )+FF, —FF,,

_B(I)an:o, (21)

where F=F(7,t). This PDE is subject to the same fundamen-
tal boundary conditions delineated in Eq. (17). Its formula-
tion constitutes another exact reduction of the Navier—Stokes
equations that will be discussed in Sec. I'V.

nnn

lll. SOLUTIONS FOR CONSTANT EXPANSION RATIOS
A. Conventional HAM approach

In this section, we provide an accurate analytical ap-
proximation to Eq. (16). With the help of HAM, the explicit
approximations for F(7) can be specified as

M M 4m+4
F(n)=2 ¢n)=2 2 N'a'7, (22)
m=0 m=0 =0

where ¢,,(7) is the so-called mth-order homotopy derivative,
defined in the Appendix by Eq. (A13), and the coefficients
al' are given by

ay = x, N~ lai ™ + G, (23)
ay = Xm)\g’_lag"_l + Cfn, (24)

m _ y m—1_m—1
a; =\; 4

m—1 m—1 m—1 m m
. hilely +3acly +xiads + Y1 + Q"))

— 25
ii-1)(I-2)(i-3) 25)
for 3<i=4m+3, in which
b= (i+ DAalh, (26)
' = +2)(i + DN Lals, (27)
d"=(i+3)i+2)(i + 1)N\}}5a75, (28)
el'=(i+4)i+3)i+2)i+ )N aliy, (29)
m—1 max{4k+4,i}

Yr=2 X Nt (30)

k=0 r=max{0,i-4m+4k}

m—-1 max{4k+4,i}

Qr=> > prem k=t (31)

k=0 r=max{0,i—4m+4k}

Cr=Cr=0, (32)

Am+d m—1 m—1 m m
"= i D ey +3acy + xiadss + YL, + Q7
3

2 = i(i—1)(i-2)(i-3)
RIS e dalsl !+ X + O
255 i(i-1)(i-2) '

(33)
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" 4§4 ey + 3ol + xiad! S + YT+ O,
S i(i= 1)(i-2)(i - 3)
-y, (34)
O,m=1, (35)
Xom = 1,m>1,
and
1, 1=i=4m+3,
VRS . (36)
0, i<1 ori>4m+3.
Using the initial guess function given by
do(m1)=3R (317, (37)
the first four coefficients are found to be
a?:%R, a3=0, agz—%R, al=0. (38)

At this juncture, the explicit HAM series coefficients are
fully determined. Other flow variables such as the velocity,
pressure, and vorticity may be readily evaluated from their
basic definitions. For example, the vorticity { may be re-
trieved from Eq. (8), viz.,

v du

(=-V*)=——-—=—wxa’F

. 39
ox dy K (39)

Other variables are omitted here for the sake of brevity. It
may be worth remarking that the convergence of the HAM
approximations is guaranteed when the linear operator £, the
initial guess ¢y(7), and the values of the convergence-
control parameter # are obtained in accordance with pre-
established rules.”®** Usually, £ and ¢(7) are constructed
based on the solution expression consistent with the nonlin-
ear behavior associated with the problem at hand. In this first
section, we use fi=—1. In a later section, we confirm that
series convergence is guaranteed for # e [—% ,—%], albeit not
limited to this range exclusively.

In order to test the accuracy of our traditional HAM
series approximations with A=—1, we compare in Figs. 2(a)
and 2(b) the HAM solution for the axial velocity, given by
F'(5)/R, to the numerical results of Eq. (16). The corre-
sponding curves are evaluated for R=*5 and values of «
ranging from —20 to 5. Clearly, a uniformly consistent
agreement with numerics is realized owing, in large part, to
the ability of the HAM approximation to capture the true,
nonlinear behavior of the solution in the limit of an infinite
series.

For the suction driven channel with no wall motion,
Zaturska et al.'' showed that one symmetric solution exists
for R e[-12.165,0] and three symmetric solutions emerge
when R e [-%,-12.165]. In much the same way, the search
for multiple solutions will have to be influenced by both R
and «, thus requiring a separate mathematical treatment, as
first explained by Dauenhauer and Majdalani.20 This treat-
ment will be carried out in Sec. III B. In the interim, the
numerical technique used by Dauenhauer and Majdalanizo
will be used to study the emergence of solution multiplicity
in suitable ranges of « and R. This is evident in Fig. 3 where
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FIG. 2. Comparison between HAM-Padé approximations (circles) and
numerical results (solid lines) for (a) R==5 and (b) R=5 over some values
of a.

one particular case is considered (e.g., =1 and R=-20) for
which three solution branches are seen to coexist. Using the
conventional HAM approach, only type I can be predicted,
although three types can be projected numerically. This ap-
parent deficiency prompts us to modify the conventional
HAM approach to the extent of granting it more generality.
As we describe in Sec. III B, the extension will enable us to
capture, using analytical series approximations, the three
types of mean flow motions that are discussed by Zaturska
et al.' in the case of a nonexpanding wall.

B. Optimal HAM approach for multiple solutions

In what follows, we describe the mathematical steps
needed to mold the HAM to the porous channel flow prob-
lem with a constant expansion ratio a. We thus consider
the steady PDE given by Eq. (16) and focus on its multiple
solutions.

Note that there exist dual or even triple solutions for
some values of R and «. In general, multiple solutions can be

Homotopy based solutions of the Navier—Stokes equations
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FIG. 3. Three solutions for F'(7)/R at a=1 and R=-20.

elusive even by numerical methods. Here, we provide an
analytical framework that enables us to capture these mul-
tiple solutions. First, we introduce the transformation

F(n)=RS(n), (40)

and so, the original equation becomes

m

S +a(nS" +38")+R(SS"-S'S")=0, (41)
subject to the boundary conditions

S(0)=0, S§"(0)=0, S(1)=1, S'(1)=0, (42)

where the prime denotes a derivative with respect to 7. To
help identify the multiple solutions that accompany different
R and «, we define F’'(0)=R 7y, where

y=5'(0). (43)

Our strategy is guided by the shooting method described
carlier.”” Instead of using the original boundary conditions
(42), we first apply HAM to secure analytical approxima-
tions for Eq. (41) using an initial value for S’(0) at the lower
end of the domain. We hence take

S(0)=0, S'(0)=vy, S"(0)=0, S(I)=1, (44)

where vy is not known initially. At the conclusion of the
analysis, ¥ may be determined from the actual boundary con-
dition that must be observed at the upper end of the domain,
specifically

S'(1)=0. (45)

At this juncture, the form of the analytical solutions to
Egs. (41) and (44) must be posited in terms of suitable func-
tions. Given that Eq. (41) is defined over a finite domain
ne[0,1], it is proper to express S(7) in a power series of
7. Besides, using Eq. (41) and the boundary conditions
§(0)=0 and §,,(0)=0, it can be shown that

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



053601-6 Xu et al.
d*s
— =0 when k=1,2,3,.... (46)
d772k 7=0

Thus, S(7) may be expressed as

S(p) =2 B, (47)

m=0

where the undetermined coefficient B,, is dependent on a.
Equation (47) defines what is often referred to as the solution
expression for S(7). According to the homotopy-based ap-
proach, one needs to introduce an initial guess function of
the form prescribed by Eq. (47) that still satisfies the prob-
lem’s boundary conditions. For this reason, we choose, for
the case of a constant wall expansion ratio, the following odd
polynomial:

So(m) =Aom+A 77 + Ay (48)

This initial guess function may be readily made to satisfy the
conditions given by Eqgs. (44) and (45). The result is

A=y, A=3-2y, Ay=y-3, (49)
whence
So(m=yn+ (G -29)7 +(y=2)7. (50)

As with perturbation and traditional nonperturbation meth-
ods, HAM transforms a nonlinear problem into an infinite
number of linear subproblems. Additionally, HAM provides
greater freedom in selecting different base functions that
serve to approximate solutions more efficiently. Equally im-
portantly, perhaps, HAM provides the means to ensure the
convergence of ensuing series solutions. This is accom-
plished through the use of the convergence-control parameter
fi. By way of illustration, we note that, even for the nonlinear
ODE, Eq. (41), it is not convenient to employ its entire linear
part L=S""+a(5S"+3S") as the linear operator. Otherwise,
the £=0 solution would contain the error function erf(7); it
would then become exceedingly difficult to retrieve higher-
order approximations. This obstacle can be overcome by se-
lecting an auxiliary operator of equal order, in this case, of
fourth order, such as

d'd
LO=—. (51)
drn
This operator has the property
L(Cy+ Cip+ Cy + C37°) =0, (52)

where (C,,C,,C,,C;) are integral constants. This linear ap-
proximation is sufficient to satisfy the rule of solution ex-
pression, Eq. (47). It should be noted that the solution for
S(7), where 5e€[0,1], represents a mapping operation of
S:[0,1]—> (=00, +c0). Instead of solving Eq. (41) directly, we
undergo continuous mapping according to

D(7;¢):[0,1] X [0,1]— (=0, + =), (53)

where

Phys. Fluids 22, 053601 (2010)

D(7:0)=Sp(7), P(7:1)=S(n). (54)

The mapping operation follows from the zeroth-order defor-
mation equation

(1= @) L[D(7:9) = So(m)] = ghN[D(7:9)], (55)

which is subject to

®(0:9) =0, _aq)((?z;q) =,
7=0
» (56)
D(7:q)
—2L =0, ®(1;9)=1.
a7 | (1:9)

On the one hand, g €[0,1] denotes the embedment param-
eter mentioned before, while # alludes to the auxiliary pa-
rameter known as the convergence-control peurameter.27 On
the other hand, £ and N refer to the linear and nonlinear
operators based on Egs. (51) and (41), respectively. The lat-
ter is defined by

JP PO FP
MP(7:9)]= a a( 7o 3@)

PO 9D FD
(@—3 -— . (57)
an  In
To make further headway, one may evaluate Eq. (55) at both
ends of its limiting expressions to deduce
g=0: L[D(7;0)-Sy(n)]=0, (58)
g=1: NMP(7:1)]=0; V#A#FO0.

In the above discussion, the initial guess S((7), defined by
Eq. (50), satisfies the boundary conditions (44). Hence, as we
track the evolution of g across the range [0,1], the solution of
the zeroth-order deformation equation will vary continuously
from the initial approximation Sy(7) to the target function
S(7) that will exactly satisfy Eq. (44). Expanding ®(7;¢) in
the Maclaurin series form with respect to ¢, we have

+00

D(739) =So(m) + X S,(0)g", (59)
m=1
where
1 J"®(n;
S, =~ TOED) (60)
m: q q=0

Here, the relationship ®(7;0)=Sy(#) is used. It should be
emphasized that the zeroth-order deformation equation (41)
contains the convergence-control parameter 7, which is used
to guarantee the convergence of the final series solution. In
principle, 7 is chosen so that the above series remains con-
vergent at g=1 over the entire domain, 7 e [0,1]. Then, us-
ing the relationship ®(7;1)=S(7), we obtain the homotopy-
series solution

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



053601-7

+00

S(m) =So(m) + 2 S,(n), (61)
m=1

where S,,(7) is unknown. Its governing equation and related
boundary conditions have to be carefully established. To this
end, we introduce the vector

S =1S0(7).81(1),S5(1), ... .S,u(m)}. (62)

Differentiating the zeroth-order deformation equation (55)
and the boundary conditions (56) m times with respect to g,
dividing by m!, and then setting ¢=0, we obtain the so-called
mth-order deformation equation

LISu(1) = XnSmr (W] =18,[S, 1 (m)]. (63)
Equation (63) is subject to
n=0: §,=0, S =0, S§'=0; =1 §,=0,
(64)
where
0, m=1
X’"Z{l, m>1, (65)

and the right-hand-side function &, is given by
) [Sm 1(7])] S”” + a(SS;:,_l + 7]SW_ )

m—1

+8S" ) (66)

m—1-n n~m-1-n

+R2 s, s"

According to Eq. (51), it is straightforward to retrieve a par-
ticular solution S, (7) of Eq. (63) by integrating the right-
hand-side term four times with respect to 7, viz.

S;(”) = XmSm—l(ﬂ)

+ﬁfffj5m(§m_1,77)d77d77d77d77~ (67)

The ensuing quadfold integration yields

Sm(ﬂ) = S;( 7]) + Cm,O + Cm,l 77+ Cm,2 7]2 + Cm37l3 (m = 1)7

(68)
where the integral constants
as’,
Cm,O = Cm,Z = 0, Cm,l =— — N and
d’l 7=0
(69)
Cm,3 == Cm,l - S;(l)

are secured from the boundary conditions in Eq. (64). The
Mth-order approximation of S(7) may hence be written as

M

S() = So(m) + 2 (). (70)
k=1

Note that the above expression incorporates the unknown
parameter 7.

The next step is to determine the value of +y that will
permit the solution to satisfy the boundary condition (45) at
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the upper end of the domain, namely, S’(1)=0. Substituting
the Mth-order approximation (70) into Eq. (45) gives

M

Ty(yh)=S5(1) + >, Si(1) =0, (71)

n=1

where I, represents the expanded form of the constrained
boundary condition. Using an Mth-order approximation, we
have

3M+2
SM(77) = E AM,n(av y’h) 772n+l (72)
n=0
and so
M+1
FM(y’ﬁ)= 2 BM,n(a7h)’)//l=0’ (73)
n=0

where Ay, ,(a,y,#) and By ,(a,h) are coefficients of the
power series of 7. Note that, as long as % is given, the solu-
tions of Eq. (71) may be readily obtained.

In our quest for an optimal value of %, we use a tech-
nique that has been shown to produce a fast converging
HAM approximation. In principle, the technique seeks to
minimize the exact square residual error of Eq. (41) at the
mth-order. This quantity is given by

E,(y.h) = J( [Esn(n)]) (74)

In practice, however, the evaluation of Em(y,ﬁ) tends to be
time-consuming. A simpler alternative consists of calculating
the averaged square residual error. In this vein, one may seek
to minimize the zeroth-order discretization of Eq. (74),

> (N[§ SM)]) : (75)

E,(y,h) =
" M+1);5 n=0
where
k
77k=kA77=M, k=0,1,2,3,... .M. (76)

Hereafter, a value of M =40 will be used with the purpose of
optimization. For traditional problems in which E,, is only
dependent on 7, it is relatively straightforward to seek an
optimal value #* for which E,, is minimized. However, for
the problem under consideration, the residual error is exac-
erbated by its dependence on both 7 and 7. In fact, both
E,(v,h) and I'y,(y,A) contain the two unknowns: vy and #.
So, while the optimal convergence-control parameter #* can
still be determined from the minimum of E,(y,#), it must be
additionally subjected to the algebraic equation (71) needed
to secure the boundary value constant y. For this doubly
coupled optimization problem, we let (A", y*) denote the so-
lution of the algebraic equation (71), which corresponds to
the minimum of the square residual error. Mathematically, it
holds that
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(%", y") = min{E,(y,4),T,(, 1) = 0}. (77)

For the sake of computational efficiency, the exact square
residual error may be replaced by the averaged square re-
sidual error (75). To identify the optimal approximation in a
region a = y=b, we take

(#*,y") = min{E, (y./).1,(y.i) =0,a= y=b}.  (78)

Such an operation may be relegated to symbolic program-
ming with a dedicated “Minimize” command.

Before leaving this section, it may be helpful to remark
that Eq. (63), the high-order deformation equation represents
a linear ODE that is relatively simple to solve. This behavior
is contrary to that of Eq. (41), the original nonlinear ODE for
uniform wall expansion with a@=const. Using homotopy, the
Dauenhauer-Majdalani ODE is transferable into an infinite
number of linear ODEs that can be solved directly. The en-
suing transformations are made possible by the flexibility of
the HAM procedure in identifying a simple auxiliary linear
operator through which the solution of the high-order defor-
mation equation can be readily obtained. Meanwhile, the so-
called convergence-control parameter 2 may be optimized to
the extent of accelerating or ensuring the convergence of the
series approximations.28 M1 These particular characteristics
represent some of the key features that distinguish HAM
from other analytical methods.

C. Multiple solutions

For constant «, Dauenhauer and Majdalani20 obtained an
exact ODE and provided the steps that can lead to a numeri-
cal solution using a fast-converging shooting method
coupled with Runge—Kutta integration. They illustrated their
results by providing numerical solutions over a modest range
of R and « that are aligned with the type I family of solutions
classified by Zaturska et al."! However, solutions of types 11
and III for the suction case, particularly those leading to
internal flow steepening and recirculation, were alluded to
but not considered in their article. Later studies by Majdalani
and Zhou,”' Majdalani et al.,”> and Zhou and Majdalani23
provided closed-form explicit approximations over some
limited ranges of suction and injection.

To illustrate how the general HAM approach may
be applied, we first consider a special case of =4 and
R=-10. We can sequentially solve up to the mth-order de-
formation equations (63) and (64) for m=1,2,3,.... We
hence retrieve

Y 3173y 325) g h<3_'y l),fs
777 6930 924 5 2
(232 y L) ;

n

21 728

ﬁ(lof 55y 25) 0

Si(n) = ﬁ(

63 126 84

59 5y 5)
il = - =+ =g, 7
" (99 33 aa)" (79)
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(e}
|

FIG. 4. Curves of T',(y,h) using a 10th-order HAM approximation
(m=10) in case of R=—10 and a=4. Solid line: #i=—1; dashed line: fi:—%;
dash-dotted line: h:—%.

63355y 15323311y
S =S h2( _
2 =S+ 5 426~ 192 972780
159 557 617y 396 889

)773+---. (80)

T 643 242 600 2 450 448

At the mth-order of approximation, S,,(7) contains the un-
known convergence-control parameter £ and the unknown
variable vy that satisfies the right-hand-side boundary condi-
tion connected with Eq. (71). At the first- and second-order
approximations, Eq. (71) yields

41 421y 116
154 1155 693
and
41 842y 232 3215
F2=h(—— Y "2)+ﬁ2<

77 1155 693 37 128
24 693 629y .\ 773 027y2 20339 ) 0. (82)
T 107207 100 6432426 153 153)

respectively, up to I',. Thus, the algebraic equation
I',,(v,72)=0 contains not only the unknown variable y but
also the unknown convergence-control parameter 7. Each
zero y* of I',,(y*,h)=0 will hence signal the presence of a
distinct solution. After determining the number of zeros, a
proper choice of # can be sought for each y*. It can thus be
seen that the convergence-control parameter 7 has no physi-
cal meaning besides granting us the freedom to calibrate its
value to the extent of optimizing the solution. For example,
in case of the tenth-order approximation for R=—10 and
a=4, the curves of I'yy(y,#) for ﬁ:—%,—l and —% are com-
puted and illustrated in Fig. 4. It is interesting that, although
I'o(y,h) curves are sensitive to the value taken by £, the
zeros of the algebraic equation I'j4(y,7%)=0 when # [—-
-] remain close. They actually become virtually 1ndlscern-
1ble as m is increased. The zeros appear to be only weakly
sensitive to & despite the existence of two zeros in the re-
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TABLE 1. The optimal convergence-control parameter 2* and the corre-
sponding averaged square residual error for the first (y>0) and second
solutions (y<0) in the case of R=—10 and a=4.

Homotopy based solutions of the Navier—Stokes equations

Phys. Fluids 22, 053601 (2010)

TABLE III. The [m,m] homotopy-Padé approximation of the first (y>0)
and second solutions (y<0) in the case of R=—10 and a=4.

First solution Second solution

m, order

of approximation h ¥ E,(y",hY) m F'(0)/R F"(0)/R F'(0)/R F"(0)/R
First solution 1 —0.886 0.577 336 32.33 0.624 478 732 8.265 444 222 —1.219 891 36.010 91
5 —1.022 0.609 118 5.25X 1072 8 0.625 005 336 8.255477 422 —1.178 465 35.178 78
10 —1.727 0.624 117 1.37x1073 12 0.625 007 412 8.255 446 248 —1.190 349 35.854 62
15 —1.764 0.624 840 8.07 X 1073 16 0.625 007 395 8.255 446 127 —1.190 319 35.854 09
20 —1.770 0.624963  6.11x107° 18 0.625 007 396 8.255 446 127 —1.190 319 35.854 11
Second solution 5 —1.303 —1.23636 2.40 20 0.625 007 396 8.255 446 125 —1.190 323 35.854 15
10 —1.479 —1.190 69 0.11 22 0.625 007 396 8.255 446 124 —1.190 323 35.854 16
15 —1.515 —1.18851 2.56X1072 24 0.625 007 396 8.255 446 124 —1.190 323 35.854 16

20 —1.458 —1.18979 226%x107*

gions ye (-2,-1) and ye (0,1). Each of these zeros corre-
sponds to a distinct solution.

At the given order of approximation m, the optimal
convergence-control parameter #* may be determined for the
positive solution of ye (0,1) by minimizing the averaged
square residual error, specifically

(#*,¥") = min{E, (y,A).,1,(y./1) =0, > 0} (83)

The first and second sets of outcomes obtained for #* and "
through minimization are cataloged in Table I at different
approximation orders. It is clear that as the order of approxi-
mation increases, the optimal convergence-control parameter
A* tends to —1.766 for the first solution, while the attendant
v* approaches a positive value of approximately 0.625 00. It
may be seen that E,(v*,2*), the averaged square residual
error entailed in this analysis, decreases monotonically as m
is increased. For the second solution, #* tends to —1.5 while
v" approaches a negative value of —1.189 79. Here, too, the
averaged square residual error E,(y*,%") decreases mono-
tonically as well.

For R=-10 and a=4, the analytical approximations of
F,(0)/R and F"(0)/R are listed in Table II for the two
solutions at hand. While the set F’(0)/R=0.625 007
and F"(0)/R~8.255 45 corresponds to the first solution, a
second set is obtained for the second solution with F'(0)/R

~-1.190 33 and F"(0)/R=35.8542. As the order of ap-
proximation is increased, the averaged square residual error
is seen to decrease monotonically down to 7.99 X 1078; in the
meantime, F'(0)/R and F"(0)/R asymptotically converge to
fixed values.

As shown in Fig. 4, there also exists a negative solution
for ye (-2,—1). At the prescribed order of approximation ,
the companion parameter #* may be determined from

(A", 7") = min{E,(y,%),T,(.i) =0,y < O}. (84)

The convergence ratio of the homotopy-series solution can
be accelerated by means of the so-called homotopy-Padé
technique.27_3 " As shown in Table III, the homotopy-Padé
technique enables us to identify the convergent approxima-
tion F'(0)/R=~0.625 007 396 and —1.190 323 for the first
and second solutions, respectively. These predictions
agree quite well with the numerical values of 0.625 007 4
and —1.190 323 reported for these cases. Note that our
analytical projections agree well with those reproduced using
Dauenhauer and Majdalani’s numerical approach.20 These
are shown in Fig. 5 where the axial flow velocity is illus-
trated using the numerical solution alongside a 20th-order
HAM approximation. The two featured solutions are ac-
quired using ﬁ:—%,% at a crossflow Reynolds number of
R=-10 and a wall expansion ratio of @=4. In short, this
example illustrates how the homotopy-based approach can

TABLE 1I. The mth-order approximation of the first (y>0) and second solutions (y<<0) in the case of

R=-10 and a=4.

m, order
h of approximation F'(0)/R F"(0)/R E,(y,h)

First solution —% 10 0.624 161 8.267 56 1.51x1073

20 0.624 967 8.256 03 6.55%x107°

30 0.625 005 8.25548 3.68%x1078

40 0.625 007 8.25545 1.81x 10710

50 0.625 007 8.25545 1.11x107"2
Second solution —% 10 —1.189 95 35.8984 0.150

20 —1.190 03 35.8474 6.54x 107

30 —1.190 41 35.8555 1.05X 1073

40 —1.190 31 35.8539 8.46 X 1077

50 —1.190 33 35.8542 7.99x 1078
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FIG. 5. Comparison of numerical solutions with the 20th-order HAM ap-
proximation for F'(7)/R in case of R=—10 and @=4. Symbols: numerical
results; dashed line: first solution with ﬁ:—%; solid line: second solution
with ﬁ:—%.

indeed capture the dual solutions of the nonlinear boundary-
value problem for channel flows with constant wall expan-
sion.

The present approach is capable of capturing triple roots
when three branches of solution arise. A concrete example
consists of the case of R=—11 and a=1.5. The corresponding
curves of I'o(y,%) at the tenth order of approximation are
given in Fig. 6 using i=—1, —%, and —%. This graph clearly
shows that two values of y emerge near —1 and 0. Besides,
it appears that a third solution exists in the region of y>1. In
the case of R=—11 and a=1.5, Eq. (71) produces three so-
lutions near —1, 0, and y>1. In seeking an optimal
convergence-control parameter, we carefully bracket our
searches within the following intervals:

(A): min{E,(y,h), T,(yh)=0, -2<y=-0.},
(85)

\

/
(AN AR

20 , T .
(4 3 2 KoY 1 2 B 4
L I Y
| |

| Yan solution Y3rd solution

4L !

FIG. 6. Curves of I',(y,%) using a tenth-order HAM approximation
(m=10) in case of R=—11 and a=1.5. Solid line: A=—1; dashed line:
ﬁ:—%; dash-dotted line: ﬁ:—%.
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FIG. 7. Comparison of numerical solutions with the 30th-order HAM ap-
proximation of F'(7)/R in case of R=-11 and a:%. Symbols: numerical
results; solid line: first solution with ﬁ=—§; dashed line: second solution
with 7i=-2; dash-dotted line: third solution with A=-3.

(B): min{E,(y,h), TI,(yh)=0 -05<y=0.5},

(86)

(©): min{E, (v.h), T,(vh)=0, 05<y=4}. (87)

Forthwith, the results of our analysis are posted in Table IV.
We find #* to be approximately —% for the first and second
solutions, and —;—‘ for the third. The HAM approximations
of F'(0)/R and F"(0)/R associated with these three solu-
tions are listed in Table V. Using the homotopy-Padé tech-
nique, we obtain F’(0)/R=-1.023 771 2 and 0.169 352 for
the first and second solutions, respectively. These values
agree very well with the numerical predictions of F’(0)/R
=-1.023 771 and 0.169 353 2 for these two branches. In
contrast, we find the third solution to be more difficult to
retrieve. This may be attributed to its averaged square re-
sidual error remaining 5.68 X 10° at the tenth-order approxi-
mation and slowly decreasing to 1.08 X 102 at the 60th order
(see Table VI). Everywhere, the three analytical approxima-
tions of F'(7)/R appear to be in excellent agreement with
the numerical predictions shown in Fig. 7. This uniformly
consistent agreement with numerics is realized owing, in
large part, to the ability of the HAM approximation to cap-
ture the true, nonlinear behavior of the solution in the limit
of an infinite series.

Generally speaking, the numerical identification of all
possible solutions associated with nonlinear boundary-
value problems can require significant effort. For the
suction driven channel flow with no wall motion, Zaturska
et al."' showed that one symmetric solution exists for
R €[-12.165,0] and three symmetric solutions emerge when
R e[-%,-12.165]. In the present work, the same types of
solutions are captured. Using HAM, dual solutions are re-
turned, for example, in the case of R=—10 and a=4, while
three distinct solutions are retrieved in the case of R=—-11
and a=1.5. The accuracy of our analytical predictions may
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TABLE IV. The optimal convergence-control parameter #* and the corresponding averaged square residual
error in the case of R=—11 and a=1.5 for three solutions of y".

m, order
of approximation h* v E, (v ,h")
First solution 4 —1.235 —0.982 73 11.9
8 —1.604 —1.020 08 0.153
12 —1.561 —1.02275 2.37%1072
16 —1.654 —-1.023 56 2491074
20 —1.625 -1.023 71 116X 1074
Second solution 6 —1.661 0.212 76 24.6
8 —1.701 0.176 35 2.18
12 —1.441 0.166 88 2.40%x 1072
16 —1.146 0.167 17 1.69X 1072
20 —1.681 0.169 45 5.95x 107
Third solution 20 —0.951 2.753 98 17.3
24 —0.859 2.757 36 12.2
26 —0.940 2.750 98 2.70
28 —0.881 2.759 36 1.09
30 —0.875 2.766 89 0.37

TABLE V. The mth-order approximation of the three solutions in the case of R=-11 and a=%.

m, order
f of approximation F'(0)/R F"(0)/R E,(v,h)

First solution -1 10 —1.022322 24.270 70 0.468

20 —1.023716 24.285 64 1.52X107*

30 —1.023 769 24.286 28 1.60X 1077

40 —1.023 771 24.286 31 5.01x10710

50 —1.023 771 24.286 31 1.72X 10712
Second solution —% 10 0.166 208 10.2842 0.67

20 0.169 384 10.2447 7.20%x 107

30 0.169 378 10.2449 2.19%X107°

40 0.169 335 10.2452 9.98x 1077

50 0.169 354 10.2451 3.49%x 1078
Third solution -2 20 2.779 59 —15.6613 3.62 X 10*?

30 276218 —15.5188 1.49 X 10*!

40 2.761 14 —15.5128 0.30

50 2.761 24 —15.5134 7.40% 1073

60 2.761 11 —15.5122 1.08x 1073

TABLE VI. The [m,m] homotopy-Padé approximation of three solutions in the case of R=-11 and a:%.

First solution

Second solution

Third solution

m F'(0)/R F"(0)/R F'(0)/R F"(0)/R F'(0)/R F"(0)/R

4 —~1.023162 1 24.292 585 1 0.166 859 0 10.282 860

8 ~1.0237700 24.286 379 7 0.167 998 0 10.239 451 2.81591 —15.8950
12 —1.023 771 1 24.286 308 6 0.169 360 1 10.245 072 2.762 90 —15.5284
16 —1.023 7712 24.286 308 8 0.169 351 8 10.245 026 2761 54 —15.5157
20 ~1.023 7712 24.286 308 8 0.169 353 2 10.245 150 2761 13 ~15.5123
22 —1.0237712 24.286 308 8 0.169 353 1 10.245 152 2.761 11 —~15.5123
24 —1.0237712 24.286 308 8 0.169 3532 10.245 151 2.761 11 —~15.5123
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FIG. 8. Streamline patterns of three types of analytical solutions in case of
R=-11 and af:%. Solid line: type I solution with F’(0)/R=2.761 11; dashed
line: type II solution with F’(0)/R=0.169 353 2; dash-dotted line: type III
solution with F'(0)/R=-1.023 771 190.

hence be viewed as supportive of the potential application of
HAM as a guide, if not alternative, to numerical solutions of
nonlinear boundary-value problems, particularly, of those
arising in fluid mechanics.

It is clear that our solutions correspond to the three types
of mean flow profiles discussed by Zaturska et al."" in the
case of a stationary porous wall. Due to the striking similari-
ties between our analytical solutions and theirs, we have la-
beled our branches after theirs. This behavior is expected
because the problem related to the porous channel flow with
stationary walls should be recoverable from our analysis in
the limiting case of a=0.

To showcase the flow behavior corresponding to the dif-
ferent branches of solution, fluid streamlines are plotted in
Fig. 8 for a=1.5 and R=-11. This graph depicts all three
types of solutions and enables us to deduce their fundamental
characteristics under conditions conducive of wall suction.

Overall, both types I and II share a similar characteristic;
it is possible for the flow drawn at the porous wall to origi-
nate from the chamber volume bounded anywhere between
0=r=1. By way of contrast, it may be seen that the type II
profile undergoes faster flow turning above the porous wall,
as corroborated by the sharper streamline curvatures depicted
in Fig. 8. For the type III profile, the fluid removed at the
surface may only originate from an annular region that ex-
tends over A=<r=1. In the case of a nonexpanding wall
(a=0), an expression for the inner distance A of the type III
annulus may be determined using a transcendental relation
that can be obtained asymptotically for R — —o. As shown by
Lu,** this relation is given by

8

(RA)exp(— RA) =— (88)

27 exp(1)’

where R is negative for wall suction. Lu’s type III solution
emerges asymptotically and may be described by the com-
pact trigonometric function,

Phys. Fluids 22, 053601 (2010)

F(y):—l_Asin< LAl ) (89)

A 1-A

At this juncture, it may be useful to remark that the curvature
disparity between the first two types will gradually vanish
with increasing |R|. This is due to the convergence of the two
branches onto a single polynomial expression that is elabo-
rately discussed by Robinson’ and Zaturska et al."' Accord-
ingly, the type I and type II branches collapse into the essen-
tially irrotational form,

F(y)=y+O(R™"); R— -0, (90)

Along similar lines, only one solution is confirmed for small
suction with R € [-12.165,0]. This is given by

F()=3y3-y%); R—0". 1)

When attention is turned to injection dominated conditions,
the unique branch for the small suction case continues to
hold as the crossflow Reynolds number undergoes a sign
switch. Two asymptotic solutions are known to date and
these correspond to either small or large injection Reynolds
numbers. According to Berman,1 the small injection mean
flow solution remains identical to the one obtained for small
suction, namely,

F()=3y3-y); R—0". (92)

However, as the crossflow Reynolds number is increased, a
trigonometric solution emerges, specifically

F(y) = sin(%ﬂ'); R — + 0. (93)

Equation (93) for the large injection case has often been
termed “Taylor’s profile” due to its relevance to several tech-
nological applications that encompass paper manufacture
and both solid and hybrid propellant gas dynamics.

Before leaving this subject, it may be instructive to re-
mark that, at first, we have initiated our analysis by exploring
the type I HAM solutions for which F(y)=1y(3-y?) repre-
sents a valid initial approximation for the problem targeted
by Dauenhauer and Majdalani.20 We have then extended our
analysis by uncovering the additional types II and III without
changing the initial guess function. We have thus signifi-
cantly broadened the range of applicability of analytical rep-
resentations for the types II and III branches beyond those
achieved asymptotically in previous studies. These include
several asymptotic solutions developed by Majdalani and
co-workers?' ™ over some special ranges of R and a#0. It
must be borne in mind, however, that the types II and III
branches of solutions are expected to be mostly unstable
according to the projections made by Zaturska et al.,'' Lu
et al.,25 and MacGillivray and Lu?

As we explore wider ranges of « and R using our
HAM-based approach, we find that when —10.727 376 =R
=-8.704 297 0, dual solutions are possible for some values
of a. In this situation, when the values of F’(0) are plotted
versus « in a range of R, a closed circle is formed, as shown
in Fig. 9. Our analytical solutions agree with the numerical
results given by the shooting integration method. Specifi-
cally, the value of F’(0) shown on the graph corresponds to
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FIG. 9. Multiple solutions for varying R and « (suction conditions). Sym-
bols: analytical results given by the HAM-based approach; line: numerical
results given by the shooting method.

the axial velocity evaluated along the channel’s midsection
plane. The presence of dual or triple solutions will thus lead
to dissimilar mean flow profiles.

IV. SOLUTIONS FOR TIME-DEPENDENT WALL
EXPANSION RATIOS

The analysis so far has been centered on the assumption
that a remains constant during the expanding or contracting
motions of the porous wall. In what follows, we relax this
condition and allow the wall expansion ratio to become time
variant. This enables us to test the validity of the original
assumption leading to the exact Navier—Stokes reduction.
Our choice of «a(r) is guided by the formulations presented
through Egs. (18)—(21). For example, by taking

a(t) = ap exp(—1) + oy[1 —exp(=1)], (94)
we obtain
B(t) =—2aq exp(—1) + 2t + 2; exp(—1). (95)

It can thus be seen that the wall expansion ratio a(z) varies
exponentially. If we further assume that ay and «; represent
the initial and final values of a(r), we can put

t

alt) = a; + (a; - aO)l_-i-t’ (96)
whence
B(t) =2at+ 2(ay— a))log(l +1). (97)

In what follows, we find it useful to employ the algebraic
approximations (96) and (97) in lieu of the exponentially
decaying forms given by Eqgs. (94) and (95). In the present
case, we solve a nonlinear PDE, here Eq. (21), with the
boundary conditions given by Eq. (17). In general, a nonlin-
ear PDE is substantially more challenging to solve than an
ODE, even by means of numerical techniques. Besides,
PDEs are traditionally regarded as fundamentally different
from ODEs. So the question that comes to mind is this: Can
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we transform a nonlinear PDE into an infinite number of
linear ODEs? The answer is positive: in many cases,” a
nonlinear PDE can be indeed broken down into a sequence
of linear ODEs by means of homotopy.41 The analytical
treatment of a nonlinear, unsteady PDE with a time-
dependent wall expansion ratio a(z) is rather similar to that
employed in the treatment of a nonlinear ODE with constant
a. The procedure is straightforward and so, in the interest of
brevity, the steps are outlined below and further detailed in
the Appendix. First, F(#,7) is expressed by a series
+o

F(77J) :F()(n’t) + E Fm(nst)s (98)

m=1

where F,,(7,1) is controlled by the high-order deformation
equation

LIFu(7.0) = XF o1 (7,01 =18, (1,1) (99)
with
F,(0,1)=0,
(100)
&2Fm aFm
- =0, F,(1,n=0, — =0,
&772 7=0 (977 7=1
in which

Su(mt)=Fo_ |+ a()(3F_ + nF"_) - (DS,
m—1

+ > (F,F! _ +FF ).

nt m—i-n (101)
n=0

Here, the primes and dots denote differentiation with respect

to 7 and 7, respectively, the auxiliary linear operator L is

given by Eq. (A5), and y,, is defined by Eq. (65). For sim-

plicity, we choose a simple initial guess

Fo(m.0) = 3R7(3 - 1),

which satisfies Eq. (17). Subsequently, the nonlinear PDE
defined by Eq. (21) may be converted into an infinite number
of linear ODEs using HAM, as shown in the Appendix.
The sensitivity of the solution with respect to the choice
of a time-dependent model for a(7) is illustrated in Fig. 10.
Therein, the axial velocity profile is plotted at R=1 and sev-
eral instants of time that correspond to a variation in «(z)
from —2 to —1. It is interesting to note the general agree-
ment between the two families of curves. As one may expect,
the profiles using the exponentially decaying behavior for
a(t) vary slightly more rapidly than those based on the alge-
braic approximation. Another case is illustrated in Fig. 11
where the axial velocity profile F,(0,7) is plotted as a func-
tion of ¢ while a(¢) is varied “to and fro” between 1 and 2. It
is clear that the velocity decays monotonically when «(r) is
reduced from 2 to 1; the converse is true as «a(r) is incre-
mented from 1 to 2. The significant outcome to report here is
that, regardless of direction taken, the velocity profiles
quickly approach the steady state conditions. Similar trends
are displayed by other flow variables. This rapid shift to
steady state behavior helps to confirm the validity of the
analysis performed heretofore, specifically in Sec. III where

(102)
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FIG. 10. Sensitivity of the axial velocity F,(#,7) at R=1 as a(¢) is varied
from ay=-2 to a;=-1.

the time dependence is deliberately ignored as a requirement
to reduce the Navier—Stokes equations into a single, fourth
order ODE.

To illustrate the time-dependent evolution of the axial
velocity, Figs. 12(a) and 12(b) are used to depict the behavior
of F'" at two different injection coefficients, specifically, for
A==*5. These results correspond to the direct temporal so-
lution of Eq. (21). To verify the rapid shift to steady state
conditions, the axial velocity profiles are shown for
t=0,0.5,1.0,2.0,5.0,10.0. Note that, at the scale used in
these graphs, the curves beyond =5 cannot be visually dis-
tinguished. Along similar lines, the spatial variation in the
normal velocity is illustrated in Figs. 13 and 14. In Fig. 13,
the sensitivity of the normal velocity is illustrated at three
different wall expansion ratios, «=-5,0,+5, hence including
those caused by suction, stationary motion, or injection.
These are computed using a 40th-order HAM approximation
and a fixed crossflow Reynolds number of R=5. As for Fig.

-1.5F

=2, o, =1

peSblii i 1

0 1 2 3 4 5 6 7 8 9 10
t

FIG. 11. Temporal variation in the centerline velocity F,(0,7) for R=1.

Phys. Fluids 22, 053601 (2010)

TTr T T rrrrrrrrrroi

t=0.0

Fr(m, 0
IS

-5

-6

LI L I I B

7=5.0,10.0

T Solid line: 1=5.0
[ Dash dotted line with symbols: 7 = 10.0
_87\\\\1\\\\1\\\\l\\\\l\\\\l\\\\l\\\\l\\\\l\\\\l\\\\l
0 01 02 03 04 05 06 07 08 09 1
(@) n
8

T

Fr(n,n
+~ W
S o

(98]

(3]

Solid line: 1 =5.0
Dash dotted line with symbols: 7 =10.0

I T T T A A Y TV

01 02 03 04 05 06 07 08 09 I
(b) n

=]

FIG. 12. Spatial variation in the axial velocity F,(7,t) for some values of ¢
using (a) A=-5 and (b) A=5.

14, it illustrates the time evolution of the normal velocity for
t=0,0.5,1.0,2.0,5.0, an injection coefficient of A=5, and a
time-dependent wall expansion ration that varies from —1 to
—2. Here, too, results beyond 7=5.0 become indiscernible,
thus signaling the onset of steady state conditions.

V. CONCLUSIONS

In this study, the porous channel with orthogonally mov-
ing walls is revisited in the context of laminar incompress-
ible motion with both uniform and nonuniform wall regres-
sions. The flow in the case of uniform wall regression is
described by a nonlinear ODE, but the flow in the case of
nonuniform wall regression is prescribed by a nonlinear
PDE. For each case, an analytic approach based on the HAM
is presented, thus transforming the original nonlinear ODE or
PDE into an infinite number of linear ODEs whose solutions
can be obtained by symbolic computation software. At the
outset, a recursive series formulation is derived that can be
readily evaluated using generic programming. The HAM-
based procedure may thus be viewed as a technique that can
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FIG. 13. Spatial variation in the normal velocity profile F(7)/R using a
40th-order HAM approximation and three fixed values of & and R=5.

greatly simplify the solution of nonlinear ODEs or PDEs. In
this endeavor, multiple solutions may be connected to a finite
number of distinct zeros, here called ", of a constraint equa-
tion associated with the shooting approach. After identifying
the distinct solutions associated with each zero, a
convergence-control parameter # may be carefully selected
to ensure the convergence of the series at hand. In the present
work, an error minimization approach is employed to deter-
mine an optimal value A" that leads to fast series conver-
gence. When necessary, the homotopy-Padé technique is in-
voked to further accelerate series convergence. At length, a
series approximation is obtained for the nonlinear
Dauenhauer—Majdalani ODE, in the case of constant wall
expansion, and for the time-dependent PDE, in the case of a
time-varying wall expansion.

t=0.0,0.5,1.0,2.0,5.0

Fm,p)
o

Tr oo 1

4

[ 3 S SRR AR S SRR WES SETHEE S SRR SR
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n

FIG. 14. Spatial variation in the normal velocity F(7,f) using a [30,30]
order homotopy-Padé approximation for some values of t and A=5. Here,
a(1) evolves exponentially from —1 to —2.
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For the uniform wall expansion ratio, our HAM-based
approach is shown to capture dual and triple solutions in
different ranges of R and . We not only recover the type I
branch of solutions pursued by Dauenhauer and Majdalani,20
but also capture the type II and type III families reported by
Zaturska et al."' These solutions were alluded to although not
pursued in Dauenhauer and Majdalani’s former article.”” The
new profiles involve either steeper flow turning at the wall
(type II) or annular flow splitting and recirculation that are
thoroughly described by Lu (type III). The high-order ap-
proximations presented here to describe all three categories
of motion are shown to exhibit substantial agreement with
the numerical results acquired using the integration algo-
rithm constructed by Dauenhauer and Majdalani.20

For the nonuniform wall expansion case, two models for
a(t) are chosen that involve either exponential or algebraic
variation from an initial ¢, to a final «;. With this assump-
tion in effect, the Navier—Stokes equations are transformed
into a PDE using a judicious choice of similarity variables.
The resulting problem is solved analytically by HAM and
shown to quickly reproduce the steady state solution ob-
tained previously. This is due to the rapid decay of the time-
dependent transients and the swift convergence of the solu-
tion to conditions corresponding to a constant wall expansion
ratio.

Finally, it is clear that HAM offers several advantages
when compared with other methods of solution. First, while
the reduced ODE has been previously solved using asymp-
totics, its accuracy has remained dependent on the size of the
small perturbation parameter 1/R. Unlike the perturbation
approximation that applies to a limited range of Reynolds
numbers, the HAM solution has no limitations. It is not only
independent of the size of 1/R but it also provides, as a
windfall, a convenient tool that can be calibrated to ensure
series convergence. Second, the process of identifying mul-
tiple solutions using HAM is facilitated, even in the case for
which the multiplicity in the numerical solution becomes
elusive. Third, the solution of the nonlinear PDE is made
possible through the use of HAM, which could deal with
both nonlinear ODEs and nonlinear PDEs with equal level of
ease. The main benefits of HAM stand, perhaps, in its ability
to solve a nonlinear equation using a parameter-free proce-
dure that is so versatile that it can handle equally efficiently
either a PDE or an ODE. Using similar tactics, our analytical
approach can be further applied and incrementally modified
to help in the identification of multiple steady and time-
dependent solutions of a variety of nonlinear equations that
arise in fluid mechanics, especially in the field of global flow
stability.
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APPENDIX: GENERAL PROCEDURE FOR SOLVING
THE UNSTEADY EXPANSION RATIO PROBLEM

In what follows, we describe the mathematical steps
needed to apply HAM to the porous channel flow problem
with a time-dependent expansion ratio (). We thus consider
the unsteady PDE given by Eq. (21). The attendant analysis
encompasses the solution to Eq. (16), which can be recov-

ered for a(t):%, B(1)=const. The description to follow can
thus be applied to both steady and unsteady cases.

To begin, the form of the analytical solutions to Eq. (21)
must be posited in term of suitable functions. Depending on
the character of B(r) or «(z), different solution expressions
are required. For the type I family of solutions that we seek
here, three cases arise depending on the behavior of a(r). For
a(t)=const, F becomes independent of time; nonetheless, to
present the procedure systematically for the three cases at
hand, we still include ¢ as we put

F(n0) =2 B (A1)
i=0

Next, we consider the unsteady a(r)=q,exp(—t)+a;[l
—exp(-1)]; the solution expression for the exponentially de-
caying behavior may be readily expressed as

F(n.1) =2 X X Bi/¢ exp(- k). (A2)

i=0 j=0 k=0

Finally, for a(f)=a,+(a;—ay)t/(1+1), the series representa-
tion for the algebraically varying expansion ratio may be
written as

F(n,1) = 2 E E EB'”W

n(1+2) .
i=0 j=0 k=0 5=0 +x)

(A3)

Here B;, Bf J and Bf-‘,’js are undetermined coefficients that we
must seek to determine.

According to the homotopy-based approach, one needs
to introduce an initial guess function of the form prescribed
by the solution expressions while satisfying the problem’s
boundary conditions. For all three cases, a suitable choice
corresponds to the leading order asymptotic solution ob-
tained by Berman' at small Reynolds numbers, specifically

do(n.0) = 3R7(3 - 7). (A4)
Note that the above equation satisfies Eq. (11) and may be
shown to be a viable candidate for the initial approximation
of F(7,t). An auxiliary linear operator £ is then defined to
the extent of capturing the highest order in Eq. (21). This is
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3O (n,1)
LIP(n0)]=—""—", (AS)
an
which has the property
L(Co+Cin+ Cof + C377) =0, (A6)

where (C,,C,,C,,C;) are integral constants. This represen-
tation satisfies the rule of solution expression through which
the linear approximation is constructed from the set of base
functions. At this point, a homotopy mapping relation may
be implemented of the type

F:m,t X [0,1] H|®(7,1;0) = ¢(7,1);
(A7)

O(7.1;1) = F(n,1).

This transformation leads to the HAM deformation equation
that has been well established as

(1 - @) L[D(n.1:q) = do(n.1)] = ghN[D(7,1:9)],

where ¢ € [0,1] is an embedding parameter and # is a non-
zero auxiliary parameter known as the convergence-control
parameter.27 Note that A is a nonlinear operator obtained by
recasting Eq. (21) into M@ (7;q)]=0. We, therefore, have

PD(7;q)

(9773
() ®O(n:9) PD(n;
3Bt()(72 (77 q)  9P(7:9) 7P (7:9)

2 an an

so 7o
#3807 B - gy T

(A8)

M®(7:9)] =

ID(n;
%+®(W;Q)

(A9)

The corresponding assortment of boundary conditions trans-
lates into

PD(n,t;
O(0.q)=0, 2L DNy,
&772 7=0
(A10)
dP(n,t;
d(1,1;9) =R, 9(n.1:9) =0.
‘97] 7=1

At this point, it may be instructive to note that when

q=0: E[(D(WJ§O)—¢0(77J)]=O,
M®(n,t;1)]=0; Vi #0.

Hence as we track the evolution of ¢ across the range [0,1],
the solution of the nonlinear equation will transition from
the initial approximation ¢y(7) to the target function that
will exactly satisfy Eq. (21). Expanding ®(7,7;¢) in the
Maclaurin series form with respect to g, we have

(A11)

+00

> bulnq",

m=1

D(n,t:q) = Dy(7,1,0) + (A12)

where
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1 I"®(n,t;q9)
Gulpt)=— ——— —| . (A13)
m! dq 4=0
For brevity, we introduce a vector
&m = {¢O(7]’Z)’ d)l (77’1), ¢2(7]’t)’ cees ¢m(7]’t)}' (A14)

The next step consists of differentiating the HAM deforma-
tion equation (A8) m times with respect to ¢, dividing by m!,
and then setting ¢g=0. This enables us to obtain the mz/-order
deformation equation

LLw(7.0) = XnPm1(7.0] =R, [ -1 (9.0)], (ALS)
which is subject to the boundary conditions
7=0: ¢,=0, ¢,=0; n=1: ¢,=0, ¢,=0.
(A16)

In Eq. (A15), the right-hand-side function R,, is given by

1 I ME(nt;q)]
-1 dg" !

Rm[d’m—l(n’t)] = (
m

q=0

m—1
=+ 2 (D 1_i+ Dl bi)
i=0

1
+ 5,3,(1)(3 Gt + 1) = BOD i

(A17)

where the prime denotes differentiation with respect to 7.

By substituting the form of Eq. (A6), the general solu-
tion for Eq. (A15) can be extracted. Using ¢, (7,1) to denote
a particular solution of Eq. (A15), one collects

Gu(1,0) = Xu @1 (0.1) + by (1) + Cff + C'p+ Co' o

+Cyp (m>0), (A18)

where Cy, CY', C, and Cj§ can be determined from the
boundary conditions in Eq. (A16). After some algebra, one
gets

== 0.0, Ci'==¢(1,0-Cj-Cy-C5,

Cy==3¢,(0.0), (A19)

5 =501, = ¢,/ (1,0) + C + C31.

It can thus be seen that the linear relation (A15) may be
solved recursively, one order at a time, for m=1,2,3,.... We
now recall that, according to the definition (A5) of L, the
high-order deformation equation (A15) is linear. Then, fol-
lowing the HAM procedure, a nonlinear PDE, such as Eq.
(21), may be transformed into an infinite number of linear
ODE:s. The present approach guarantees the convergence of
the series solution by providing the freedom to select a suit-
able convergence-control parameter # or to use the
homotopy-Padé technique.zg’31
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