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A new non-perturbative approach is proposed to solve time-independent Schrödinger equations in quantum mechanics. It is based
on the homotopy analysis method (HAM) that was developed by the author in 1992 for highly nonlinear equations and has been
widely applied in many fields. Unlike perturbative methods, this HAM-based approach has nothing to do with small/large physical
parameters. Besides, convergent series solution can be obtained even if the disturbance is far from the known status. A nonlinear
harmonic oscillator is used as an example to illustrate the validity of this approach for disturbances that might be one thousand
times larger than the possible superior limit of the perturbative approach. This HAM-based approach could provide us rigorous
theoretical results in quantum mechanics, which can be directly compared with experimental data. Obviously, this is of great
benefit not only for improving the accuracy of experimental measurements but also for validating physical theories.

non-perturbative series, homotopy analysis method, quantum mechanics

PACS number(s): 03.65.-w, 03.65.Ge, 02.30.Lt, 02.30.Mv

Citation: S. J. Liao, A new non-perturbative approach in quantum mechanics for time-independent Schrödinger equations, Sci. China-Phys. Mech. Astron. 63,
234612 (2020), https://doi.org/10.1007/s11433-019-9430-4

1 Motivation

Perturbation methods [1, 2] are widely used in quantum me-
chanics [3-5], mainly because exact solutions can be gained
in quite a few cases. However, it is widely known that the
perturbation methods [1,2] are valid only when a small phys-
ical parameter indeed exists, say, the disturbance (or depar-
ture) from the case with known exact solution must be tiny
enough. This limitation greatly restricts the applications of
perturbation methods. In practice, one often gives a first-
order perturbation approximation and then checks whether or
not it agrees with related experimental data, but without con-
sidering the convergence of the corresponding perturbative
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series. Strictly speaking, this is more or less “phenomeno-
logical” rather than “ontological”, since it is not rigorous in
mathematics. The reliable theoretical results in quantum me-
chanics are necessary for direct comparison with experimen-
tal data. Obviously, this is of great benefit not only for im-
proving experimental measurements but also for validating
physical theories.

To overcome the restrictions of perturbation methods,
the author [6-13] developed the homotopy analysis method
(HAM), an analytic approximation method for highly non-
linear equations. Unlike perturbation methods, the HAM is
based on the homotopy in topology [14] and thus has nothing
to do with any small physical parameters at all, and therefore
can solve nonlinear equations without small/large physical
parameters. More importantly, the HAM provides us a con-
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venient way to guarantee the convergence of solution series
by means of introducing a so-called “convergence-control pa-
rameter”, which has no physical meanings so that we have
freedom to choose a proper value for it to ensure convergence
of solution series. Besides, the HAM provides us great free-
dom to choose initial guesses of unknowns, so that iteration
can be introduced naturally. As a result, the HAM is valid for
highly nonlinear equations. In addition, it has been proved
that many traditional non-perturbative approaches, such as
the Adomian decomposition method (ADM) [15, 16], the δ-
expansion method [17, 18] and so on, are only special cases
of the HAM. Furthermore, it has been proved that even the fa-
mous Euler transform is also a special case of the HAM [12].
In this way, nearly all restrictions of perturbation methods
have been overcome by the HAM, as illustrated by its users in
a wide range of fields with more than thousands related pub-
lications (for examples, please see refs. [19-27]). It should
be emphasized that the HAM has been successfully applied
to theoretically predict the existence of the so-called steady-
state resonant gravity waves [28], which had been later exper-
imentally confirmed [29]. The discovery of the steady-state
resonant gravity waves [30] illustrates the novelty and po-
tential of the HAM, since a truly new method should/must
always bring us something new/different.

Especially, the HAM works well even for problems with
rather high nonlinearity. For example, the convergent se-
ries solution of Von Kàrmàn plate under arbitrary uniform
pressure (i.e., with arbitrary deformation) are obtained by
means of the HAM [31, 32], and besides it has been proved
that all previous perturbative approaches for Von Kàrmàn
plate are special cases of the HAM. In addition, using the
HAM, Zhong and Liao [33] successfully gained the con-
vergent series solution of the limiting Stokes wave of ex-
treme height in arbitrary water depth (including the extremely
shallow water), which could not been found by perturba-
tion methods and even not by numerical techniques. All of
these illustrate the validity of the HAM for highly nonlinear
problems.

Here, encouraged by all of these, we further apply the
HAM to quantum mechanics. For the sake of simplic-
ity, let us first consider the time-independent Schrödinger
equation

Hψn(r) = Enψn(r), (1)

where H is a Hamiltonian operator, ψn(r) and En are the un-
known eigenfunction and eigenvalue of H, r denotes the spa-
tial coordinate, respectively. Assume that each eigenvalue En

corresponds to an unique eigenfunction ψn(r) only. Besides,
assume also that the unknown eigenfunction ψn(r) can be ex-
pressed by a complete set of the known eigenfunctions ψb

m(r),

m = 0, 1, 2, 3, · · · ,Ns, i.e.,

ψn(r) =
Ns∑

m=0

an,m ψb
m(r), (2)

satisfying

H0ψ
b
m(r) = Eb

mψ
b
m(r), (3)

where ψb
m(r) and Eb

m are the known eigenfunction and eigen-
value of the Hamiltonian operator H0, respectively, and Ns

should be infinite in theory but often a finite positive integer
in practice. Assume that each eigenvalue Eb

m corresponds to
an unique eigenfunction ψb

m(r) only, and besides the known
basis ψb

m(r) is orthonormal, i.e.,∫
ψb

m(r)ψb
n(r)∗dΩ =

(
ψb

m(r), ψb
n(r)∗

)
= δmn

=

 1, when m = n,

0, when m , n,
(4)

where ψb
n(r)∗ is a complex conjugate of ψb

n(r).
In sect. 2 we briefly describe the basic ideas of the HAM-

based approach for time-independent Schrödinger equations.
In sect. 3 we illustrate that the convergent series can be
gained by means of the HAM-based approach even in the
case far from the known situation, i.e., with quite large distur-
bance. This is quite different from the perturbative approach
in quantum mechanics. For the sake of comparison, its per-
turbative results are also given in sect. 3.1. The concluding
remarks are given in sect. 4. For the sake of convenience, the
perturbative approach is briefly described in the Appendix.

2 The HAM-based approach

The HAM [6-13] is based on the homotopy in topology [14].
Let q ∈ [0, 1] denote the embedding parameter, c0 , 0 be
the so-called “convergence-control parameter”, respectively.
We construct a family of equations, namely the zeroth-order
deformation equation:

(1 − q)
(
H0 − Eb

n

) [
Ψn(r; q) − ψ(0)

n (r)
]

= c0 q {HΨn(r; q) − En(q)Ψn(r; q)} , q ∈ [0, 1], (5)

where ψ(0)
n (r) is the initial guess of ψn(r), Ψn(r; q) and En(q)

are the continuous mappings in q ∈ [0, 1] for the unknown
eigenfunction ψn(r) and En, respectively. Note that we have
great freedom to choose the convergence-control parameter
c0, which has no physical meanings at all. Note that, accord-
ing to eq. (5), both of Ψn(r; q) and En(q) are also dependent
upon the convergence-control parameter c0 in cases of q , 0
and q , 1. When q = 0, we have(
H0 − Eb

n

) [
Ψn(r; 0) − ψ(0)

n (r)
]
= 0, (6)
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which gives, since
(
H0 − Eb

n

)
is a linear operator, that

Ψn(r; 0) = ψ(0)
n (r). (7)

When q = 1, since c0 , 0, eq. (5) is equivalent to the original
eq. (1), provided

Ψn(r; 1) = ψn(r), En(1) = En. (8)

Write E(0)
n = En(0). Then, as q enlarges from 0 to 1,

Ψn(r; q) varies (or deforms) continuously from the known ini-
tial guess ψ(0)

n (r) to the unknown eigenfunction ψn(r), while
En(q) changes continuously from E(0)

n to the unknown eigen-
value En, respectively. This is the reason why eq. (5) is called
the zeroth-order deformation equation. Note that such kind of
deformation is dependent upon the convergence-control pa-
rameter c0.

Note that the zeroth-order deformation eq. (5) contains the
so-called “convergence control parameter” c0, which has no
physical meaning so that we have great freedom to choose its
value. Thus, both of Ψn(r; q) and En(q) are dependent upon
c0, too, except at the starting point q = 0 and the end-point
q = 1. Assume that the convergence-control parameter c0 is
so properly chosen that the Maclaurin series

Ψn(r; q) = ψ(0)
n (r) +

+∞∑
k=1

ψ(k)
n (r) qk, (9)

En(q) = E(0)
n +

+∞∑
k=1

E(k)
n qk, (10)

exist and besides are convergent at q = 1, where

ψ(k)
n (r) =

1
k!

∂kΨn(r; q)
∂qk

∣∣∣∣∣∣
q=0

, E(k)
n =

1
k!

dkEn(q)
dqk

∣∣∣∣∣∣
q=0

.

Then, according to eq. (8), we have the homotopy series so-
lution

ψn(r) = ψ(0)
n (r) +

+∞∑
k=1

ψ(k)
n (r), (11)

En = E(0)
n +

+∞∑
k=1

E(k)
n . (12)

The Mth-order approximation of ψn(r) and En read

ψ̂n(r) ≈ ψ(0)
n (r) +

M∑
k=1

ψ(k)
n (r), (13)

Ên ≈ E(0)
n +

M∑
k=1

E(k)
n . (14)

The accuracy of the approximation is measured by the resid-
ual error square of the original Schrödinger equation, i.e.,

∆̃RES
M =

(
Hψ̂n − Ênψ̂n,Hψ̂∗n − Ênψ̂

∗
n

)
. (15)

Substituting the Maclaurin series (9) and (10) into the
zeroth-order deformation eq. (5) and equating the like-power
of q, we have the first-order deformation equation(
H0 − Eb

n

)
ψ(1)

n (r) = c0

[
Hψ(0)

n (r) − E(0)
n ψ(0)

n (r)
]
= c0Rn,0(r)

(16)

and the high-order deformation equation(
H0 − Eb

n

) [
ψ(m)

n (r) − ψ(m−1)
n (r)

]
= c0 Rn,m−1(r), m ≥ 2,

(17)

where

Rn,k(r) =
1
k!

∂k {HΨn(r; q) − En(q)Ψn(r; q)}
∂qk

∣∣∣∣∣∣
q=0

= Hψ(k)
n (r) −

k∑
j=0

E( j)
n ψ

(k− j)
n (r). (18)

Writing

ψ(1)
n (r) =

Ns∑
m=0

a(1)
n,m ψb

m(r) (19)

and using eq. (3), the 1st-order deformation eq. (16) becomes

Ns∑
m=0

a(1)
n,m

(
Eb

m − Eb
n

)
ψb

m(r) = c0 Rn,0(r). (20)

Multiplying ψb
j (r)∗ on both sides of the above equation and

integrating in the whole domain, we have

Ns∑
m=0

a(1)
n,m

(
Eb

m − Eb
n

) (
ψb

m(r), ψb
j (r)∗

)
= c0

(
Rn,0(r), ψb

j (r)∗
)
.

(21)

Since
(
ψb

m(r), ψb
j (r)∗

)
= δm j, we have(

Eb
m − Eb

n

)
a(1)

n,m = c0 ∆
n,m
0 , (22)

where

∆
n,m
0 =

(
Rn,0(r), ψb

m(r)∗
)
=

∫ [
Rn,0(r) ψb

m(r)∗
]

dΩ. (23)

So, in case of m , n, we have

a(1)
n,m = c0

(
∆

n,m
0

Eb
m − Eb

n

)
, m , n. (24)

However, in case of m = n, for arbitrary finite value of a(1)
n,n,

we always have

∆
n,n
0 = a(1)

n,n

(
Eb

n − Eb
n

)
= 0, (25)
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say,(
Hψ(0)

n (r), ψb
n(r)∗

)
− E(0)

n

(
ψ(0)

n (r), ψb
n(r)∗

)
= 0, (26)

which gives

E(0)
n =

(
Hψ(0)

n (r), ψb
n(r)∗

)(
ψ(0)

n (r), ψb
n(r)∗

) . (27)

Thus, we have the solution

ψ(1)
n (r) = a(1)

n,n ψ
b
n(r) + c0

Ns∑
m=0,m,n

(
∆

n,m
0

Eb
m − Eb

n

)
ψb

m(r), (28)

where the cofficient a(1)
n,n is unknown.

Similarly, writing

ψ(k)
n (r) − ψ(k−1)

n (r) =
Ns∑

m=0

a(k)
n,m ψb

m(r), k ≥ 2,

and using eq. (3), we have

a(k)
n,m = c0

(
∆

n,m
k−1

Eb
m − Eb

n

)
, m , n, (29)

where

∆
n,m
j =

(
Rn, j(r), ψb

m(r)∗
)
=

∫ [
Rn, j(r) ψb

m(r)∗
]

dΩ (30)

is the projection of Rn, j(r) on ψb
m(r), so that

ψ(k)
n (r) = ψ(k−1)

n (r) + a(k)
n,n ψ

b
n(r) + c0

Ns∑
m=0,m,n

(
∆

n,m
k−1

Eb
m − Eb

n

)
ψb

m(r),

k > 1, (31)

where the coefficient a(k)
n,n is unknown.

Similarly, E(k)
n is determined by the equation

∆
n,n
k = 0, (32)

say,Hψ(k)
n (r) −

k−1∑
j=0

E( j)
n ψ

(k− j)
n (r), ψb

n(r)∗


− E(k)
n

(
ψ(0)

n (r), ψb
n(r)∗

)
= 0, (33)

which gives

E(k)
n =

(
Fn,k(r), ψb

n(r)∗
)(

ψ(0)
n (r), ψb

n(r)∗
) . (34)

where

Fn,k(r) = Hψ(k)
n (r) −

k−1∑
j=0

E( j)
n ψ

(k− j)
n (r). (35)

Note that the coefficient a(1)
n,n in eq. (28) and a(k)

n,n in eq. (31)
are unknown. In the perturbation approach of quantum me-
chanics, they are assumed to be zero. However, seriously
speaking, they can be arbitrary in mathematics. How to de-
termine them?

Note that each value of a(k)
n,n corresponds to a residual er-

ror square (15) of the original Schrödinger equation. Ob-
viously, the optimal value of a(k)

n,n should give the minimum
of the residual error square at the kth-order approximation.
Write

ψ̂n(r)′ =
k−1∑
j=0

ψ
( j)
n (r) + ψ̃(k)

n (r), (36)

where

ψ̃(k)
n (r) = χkψ

(k−1)
n (r) + c0

Ns∑
m=0,m,n

(
∆

n,m
k−1

Eb
m − Eb

n

)
ψb

m(r). (37)

Then, the residual error square

∆̃RES
k =

((
H − Ên

) (
ψ̂n(r)′ + a(k)

n,n ψ
b
n

)
,(

H − Ên

) (
ψ̂n(r)′ + a(k)

n,n ψ
b
n

)∗)
(38)

has the minimum when

d∆̃RES
k

d a(k)
n,n

= 0,

say,((
H − Ên

) (
ψ̂n(r)′ + a(k)

n,n ψ
b
n

)
,
(
H − Ên

)
(ψb

n)∗
)
= 0, (39)

which gives the optimal value

a(k)
n,n = −

((
H − Ên

)
ψ̂n(r)′,

(
H − Ên

)
ψb

n(r)∗
)((

H − Ên

)
ψb

n(r),
(
H − Ên

)
ψb

n(r)∗
) . (40)

First of all, we choose an initial guess ψ(0)
n (r). Note that we

have great freedom to choose it. For tiny disturbance, we can
simply choose ψ(0)

n (r) = ψb
n(r). Then, we gain E(0)

n by means
of eq. (27) and further obtain ψ(1)

n by eqs. (28) and (40 ) for
the 1st-order deformation equation. Thereafter, we gain E(1)

n

by means of eq. (34) and further ψ(2)
n by eqs. (31) and (40)

for the 2nd-order deformation equation, and so on.
Unlike perturbation methods, there exists the so-called

“convergence-control parameter” c0 in the frame of the
HAM, which has no physical meanings so that we have great
freedom to choose its value so as to guarantee the conver-
gence of the solution series (11) and (12). As illustrated
by Liao [8, 9], there always exists such a finite interval of
c0, in which each value of c0 can ensure that each solu-
tion series converges to the same result, although with dif-
ferent rates of convergence. Besides, the optimal value of the
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convergence-control parameter c0 corresponds to the mini-
mum of the residual error square, as mentioned by Liao [12].

Unlike perturbation method, the HAM provides us great
freedom to choose the initial guess ψ(0)

n (r). Obviously, we
can use a known Mth-order approximation ψ̂n as a better ini-
tial guess ψ(0)

n . This gives us the Mth-order iteration of HAM
approach, which can greatly accelerate the convergence of
solution series, as mentioned by Liao [8, 9] and illustrated
below.

Note that the above approach is analytic in essence, since
there are no spatial and temporal discretizations of any un-
known functions. Besides, it is unnecessary to solve any
nonlinear algebraic equations, which are unavoidable when
numerical techniques are used to solve eigenvalue problems.

3 An illustrative example

To show the validity of the HAM-based approach mentioned
above, let us consider a one-dimensional nonlinear harmonic
oscillator

H̃ψ̃n(x) =
[
− ~

2

2m
d2

dx2 +
1
2

mω2x2 + β

(
m2ω3

~

)
x4

]
ψ̃n(x)

= Ẽn ψ̃n(x). (41)

Under the transformation

ξ =

√
mω
~

x, ψ̃n(x) =
(mω
~

)1/4
ψn(ξ), Ẽn = ~ ω En, (42)

the dimensionless form of eq. (41) reads

Hψn(ξ) =
[
−1

2
d2

dξ2 +
1
2
ξ2 + βξ4

]
ψn(ξ) = En ψn(ξ) (43)

with an orthonormal basis

ψb
n(ξ) =

1
4√π
√

2n n!
H̃n(ξ) exp

(
−ξ

2

2

)
, Eb

n = n +
1
2
, (44)

satisfying

H0ψ
b
n(ξ) = Eb

n ψ
b
n(ξ), (45)

where Eb
n is the eigenfunction, H̃n(ξ) is the nth Hermite poly-

nomial in ξ, the Hamiltonian operators H and H0 are defined
by

H = −1
2

d2

dξ2 +
1
2
ξ2 + βξ4, (46)

H0 = −
1
2

d2

dξ2 +
1
2
ξ2, (47)

respectively.

3.1 Perturbative results

The perturbative approach can be found in many textbooks
of quantum mechanics. For the sake of convenience, its ba-
sic ideas are briefly described in Appendix. Here, we simply
give the perturbative result of E0:

E0 =
1
2
+

3
4
β − 21

8
β2 +

333
16

β3 − 30885
128

β4 +
916731

256
β5

− 65518401
1024

β6 + · · · (48)

However, even for small values of β such as β = 0.03 and
β = 0.05, the perturbative results are unfortunately divergent,
as shown in Tables 1, 2 and Figure 1. At the 30th-order of
approximation, the residual error squares of the perturbative
series reach 2.9 × 10+19 in case of β = 0.03 and 2.2 × 10+41

in case of β = 0.05, respectively. As shown in Figure 1, al-
though the 5th-order perturbative approximation of E0 agrees
well with the 10th-order approximation in β ∈ [0, 0.05], the
perturbation series of E0 is actually divergent for β ≥ 0.02.
This is very clear from Figure 2: when β > 0.02, the
residual error squares of the perturbative results increase as
the order of approximation enlarges. Therefore, the tradi-
tional perturbative approach, which has been widely used in

Table 1 The mth-order perturbative approximation of E0 for eq. (43) and
the corresponding residual error square ∆̃RES

m in case of β = 0.03 by means
of Ns = 40

mth-order E0 Residual error square

1 0.5225 7.1 ×10−4

3 0.520699 1.3 ×10−4

5 0.520591 1.3 ×10−4

10 0.520555 1.6 ×10−2

15 0.520577 1.6 ×10+2

20 0.520389 3.2 ×10+7

25 0.526920 2.6 ×10+13

30 −0.104234 2.9 ×10+19

Table 2 The mth-order perturbative approximation of E0 for eq. (43) and
the corresponding residual error square ∆̃RES

m in case of β = 0.03 by means
of Ns = 40

mth-order E0 Residual error square

1 0.5375 5.5 ×10−3

3 0.533539 7.8 ×10−3

5 0.533150 6.2 ×10−2

10 0.531198 1.2 ×10+3

15 0.572766 2.0 ×10+9

18 −0.119387 5.0 ×10+13

20 −4.95995 6.9×10+16

25 2549.9 7.1 ×10+26

30 −3.16 ×106 2.2 ×10+41



S. J. Liao Sci. China-Phys. Mech. Astron. March (2020) Vol. 63 No. 3 234612-6

0 0.05 0.10 0.15

0.2

0.4

0.6

0.8

1.0

1st-order

5th-order

10th-order

25th-order

30th-order

Perturbative approach

E
0

β

Figure 1 (Color online) The perturbative results of E0 in eq. (43) ver-
sus β at the different order of approximation. Solid line: 1st-order; dashed
line: 5th-order; dash-dotted line: 10th-order; long-dashed line: 25th-order;
dash-dot-dotted line: 30th-order.
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Figure 2 (Color online) The residual error squares of the perturbative re-
sults versus β at the different order of approximations. Solid line: 1st-order;
dashed line: 3th-order; dash-dotted line: 5th-order; dash-dot-dotted line:
10th-order.

quantum mechanics, is valid only for a rather tiny disturbance
indeed! This greatly restricts the application of perturbation
methods.

3.2 Results given by the HAM-based approach

However, unlike perturbative approach, the HAM contains
the so-called “convergence-control parameter” c0, which pro-
vides us a convenient way to guarantee the convergence of
solution series, as shown below.

To validate the HAM-baseed approach mentioned above,
let us first consider the case with a small disturbance, i.e.,
β = 1/100. We use the base ψb

0(r) as the initial guess of ψ0(r)
and choose Ns = 24. Note that, unlike the traditional pertur-
bation approach, the HAM approach contains the so-called

“convergence-control parameter” c0, so that all results includ-
ing E0, ψ0(r) and the residual error square at different order
of approximations are functions of c0. As shown in Figure 3,
when −1.5 < c0 < −0.1, the residual error squares continu-
ously decrease as the order of approximation enlarges. Be-
sides, the optimal value of c0 corresponds to the minimum of
the residual error square. This is indeed true: the convergent
eigenfunction ψ0(r) and eigenvalue E0 are gained by means
of the HAM-based approach using c0 = −3/4 and N = 24, 30
and 36, respectively, as shown in Figure 4. Note that the “fi-
nal” residual error square depends upon the truncation num-
ber Ns: the larger the truncation number Ns, the smaller the
“final” residual error square. This is reasonable in mathe-
matics, since larger truncation number Ns should give better
approximation. By means of the HAM-based approach using
c0 = −3/4 and Ns = 40, we gain the convergent eigenvalue
E0 = 0.50725620452460284095 in accuracy of 20 digits,
as shown in Table 3, which agrees well with its homotopy-
Padé approximation (see refs. [8, 9]) in Table 4. This illus-
trates the validity of the HAM-based approach for the time-
independent Schrödinger equation.

Note that the perturbative series are divergent in case of
β = 0.03 and β = 0.05, as shown in Figures 1, 2 and Ta-
bles 1 and 2. Fortunately, the HAM-based approach con-
tains the “convergence-control parameter” c0, which has no
physical meaning so that we have great freedom to choose
it. This provides us a convenient way to guarantee the con-
vergence of solution series. The residual error squares of
the analytic approximations (versus c0) given by the HAM-
based approach using the initial guess ψ(0)

0 (r)= ψb
0(r) and

Ns = 40 in case of β = 0.03 and β = 0.05 are as shown in

R
e
s
id

u
a
l 
e
rr

o
r 

s
q
u
a
re

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2

10−12

10−11

10−10

10−9

10−8

10−7

10−6

c0

Figure 3 (Color online) Residual error square versus the convergence-
control parameter c0 in case of β = 0.01 and n = 0, given by means of
the HAM-based approach using the initial guess ψb

0(r) and Ns = 24. Solid
line: 1st-order; dashed line: 2nd-order; dash-dotted line: 3rd-order; dash-
dot-dotted line: 4th-order; long-dashed line: 5th-order.
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Order of approximation
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Figure 4 (Color online) Residual error square versus the order of approx-
imation in case of β = 0.01 and n = 0, given by means of the HAM-based
approach using the initial guess ψb

0(r) and Ns = 24, 30 and 36, respectively.
Circle: Ns = 24; square: Ns = 30; delta: Ns = 36.

Table 3 Approximations of E0 and the residual error square ∆̃RES
m in case

of β = 1/100 and n = 0, given by means of the HAM-based approach using
Ns = 40, c0 = −3/4 and the initial guess ψb

0(r)

m E0 Residual error square

1 0.5073031250 2.1 ×10−6

2 0.5072656133 5.5 ×10−8

3 0.5072581884 2.1 ×10−9

4 0.5072566129 9.5 ×10−11

8 0.5072562054 6.7 ×10−16

12 0.50725620452 1.7 ×10−20

16 0.5072562045246 3.8 ×10−22

20 0.5072562045246028 3.6 ×10−23

25 0.5072562045246028409 2.2 ×10−24

30 0.50725620452460284095 1.3 ×10−25

35 0.50725620452460284095 7.9 ×10−27

40 0.50725620452460284095 4.9 ×10−28

Table 4 The [m,m] homotopy-Padé approximant of E0 of eq. (43) in case
of β = 1/100 and n = 0, given by means of the HAM-based approach using
Ns = 40, c0 = −3/4 and the initial guess ψb

0(r)

m E0

2 0.50725620742

4 0.507256204524

6 0.507256204524602

8 0.50725620452460284

10 0.50725620452460284095

12 0.50725620452460284095

14 0.50725620452460284095

16 0.50725620452460284095

18 0.50725620452460284095

20 0.50725620452460284095

Figures 5 and 6, respectively. Note that in each case there
always exists a finite interval of c0, in which the residual er-
ror square decreases as the order of approximation enlarges.
This is indeed true: the convergent results are obtained by
means of the HAM in case of n = 0 and β = 0.03 or
β = 0.05, using a proper “convergence-control parameter”
c0 = −2/5 or c0 = −1/4, respectively, as shown in Ta-
bles 5-8. In case of β = −0.03, our 40th-order approx-
imation E0 = 0.52056172 agrees in accuracy of 8 digits
with E0 = 0.52056171987300195300 given by means of the
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Figure 5 (Color online) Residual error square versus the convergence-
control parameter c0 in case of β = 0.03 and n = 0, given by means of the
HAM-based approach using the initial guess ψb

0(r) and Ns = 40 at the differ-
ent orders of approximation. Solid line: 1st-order; dashed line: 2nd-order;
dash-dotted line: 3rd-order; dash-dot-dotted line: 4th-order; long-dashed
line: 5th-order.
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Figure 6 (Color online) Residual error square versus the convergence-
control parameter c0 in case of β = 0.05 and n = 0, given by means of the
HAM-based approach using the initial guess ψb

0(r) and Ns = 40 at the differ-
ent orders of approximation. Solid line: 1st-order; dashed line: 2nd-order;
dash-dotted line: 3rd-order; dash-dot-dotted line: 4th-order; long-dashed
line: 5th-order.
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Table 5 Approximations of E0 and the residual error square ∆̃RES
m in case

of β = 3/100 and n = 0, given by means of the HAM-based approach using
Ns = 40, c0 = −1/3 and the initial guess ψb

0(r)

m E0 Residual error square

1 0.5217125 3.3 ×10−5

3 0.52097595 3.0 ×10−6

5 0.52071428 3.7 ×10−7

10 0.52057524 3.1 ×10−9

15 0.52056301 3.5 ×10−11

20 0.52056185 4.3 ×10−13

25 0.52056173 6.2 ×10−15

30 0.52056172 8.9 ×10−17

35 0.52056172 1.3 ×10−18

40 0.52056172 2.0 ×10−20

Table 6 The [m,m] homotopy-Padé approximant of E0 of eq. (43) in case
of β = 3/100 and n = 0, given by means of the HAM using Ns = 40,
c0 = −1/3 and the initial guess ψb

0(r)

m E0

2 0.520562

4 0.5205617

6 0.5205617198

8 0.520561719873

10 0.52056171987300

12 0.520561719873002

14 0.52056171987300195

16 0.52056171987300195300

18 0.52056171987300195300

20 0.52056171987300195300

Table 7 Approximations of E0 and the residual error square ∆̃RES
m in case

of β = 1/20 and n = 0, given by means of the HAM-based approach using
Ns = 40, c0 = −1/4 and the initial guess ψb

0(r)

m E0 Residual error square

1 0.53585938 1.4 ×10−4

3 0.53408899 2.0 ×10−5

5 0.53331047 3.7 ×10−6

10 0.53274784 1.0 ×10−7

15 0.53266070 3.7 ×10−9

20 0.53264599 1.5 ×10−10

25 0.53264336 6.9 ×10−12

30 0.53264287 3.2 ×10−13

35 0.53264278 1.6 ×10−14

40 0.53264276 7.8 ×10−16

homotopy-Padé technique [8, 9]. In case of β = 0.05, our
40th-order approximation E0 = 0.53264276 agrees in accu-
racy of 8 digits with E0 = 0.53264275477185884443 given
by means of the homotopy-Padé technique [8,9]. With the in-

crease of the approximation order, the residual error squares
decrease exponentially, as shown in Figure 7, while the accu-
racy of the eigenvalue E0 increases exponentially, as shown
in Figure 8, respectively. So, unlike perturbation approach
that is invalid for β > 0.02, the HAM-based approach works
well for larger disturbances β = 0.03 and β = 0.05. These
illustrate the validity of the HAM approach for the time-
independent Schrödinger equations.

In addition, unlike perturbation method, we have great
freedom to choose the initial guess ψ(0)

n (r) in the frame of
the HAM to gain a Mth-order approximation (13). Then, one
can further use the known Mth-order approximation as a new
initial guess ψ(0)

n (r) to gain a better Mth-order approximation,
and so on. This provides us an iteration approach. For exam-
ple, in case of n = 0 and β = 0.03 or β = 0.05, we can
first use the base ψb

0(r) as an initial guess of the unknown

Table 8 The [m,m] homotopy-Padé approximant of E0 of eq. (43) in case
of β = 1/20 and n = 0, given by means of the HAM-based approach using
Ns = 40, c0 = −1/4 and the initial guess ψb

0(r)

m E0

2 0.5326

4 0.532642

6 0.53264275

8 0.532642754

10 0.53264275477

12 0.532642754772

14 0.5326427547718

16 0.53264275477185884

18 0.53264275477185884443

20 0.53264275477185884443

Order of approximation
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Figure 7 (Color online) Residual error square versus the order of approx-
imation given by means of the HAM-based approach using the initial guess
ψb

0(r) and Ns = 40 in case of β = 0.03, n = 0, c0 = −1/3 and β = 0.05,
n = 0, c0 = −1/4, respectively. Circle: β = 0.03; square: β = 0.05.
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eigenfunction to gain a Mth-order approximation (13) by
means of the HAM-based approach with Ns = 40 and c0 =

−1/3 (when β = 0.03) or c0 = −1/4 (when β = 0.05),
and then use this Mth-order approximation as a new initial
guess ψ(0)

n (r) to further gain a better Mth-order approxima-
tion (13) by means of the HAM-based approach, where M=1,
2, 3. As shown in Figure 9, the corresponding residual er-
ror squares decrease quickly, and besides the higher the or-
der M of approximation at each iteration, the faster the itera-
tion converges. Note that, for the 2nd and 3rd-order iteration
approach, the accuracy of approximate solution can not be
heightened after some times of iteration, mainly due to the
restriction of the truncation number Ns. Note that all of these

Order of approximation
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Figure 8 (Color online) The accuracy of the eigenvalue E0 in case of
β = 0.03 and β = 0.05, given by means of the HAM-based approach using
the initial guess ψb

0(r), Ns = 40 and c0 = −1/3 (when β = 0.03) or c0 = −1/4
(when β = 0.05). Circles: β = 0.03; square: β = 0.05.
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Figure 9 (Color online) Residual error square versus the times of iteration
in case of β = 0.03 and n = 0, given by means of the HAM-based approach
using c0 = −1/3 and Ns = 40. Circle: 1st-order; square: 2nd-order; delta:
3rd-order.

results given by the iterative HAM-based approaches agree
quite well with the previous non-iterative HAM approach.
These illustrate the validity of the iterative HAM-based ap-
proach mentioned in this paper. Similarly, by means of the it-
erative approach using a proper “convergence-control param-
eter” c0 with a large enough truncation number Ns, the con-
vergent eigenfunction ψ0 in case of β = 0.05 can be further
used as an initial guess ψ(0)

n (r) to gain a convergent eigenfunc-
tion ψ0(r) and a convergent eigenvalue E0 in case of β = 0.1
(Figure 10), and so on.

In this way, we successfully obtain the convergent eigen-
value E0 and eigenfunction ψ0(r) for different values of
β ∈ [0, 5], as listed in Table 9 and shown in Figures 11 and
12. In a similar way, we gained some convergent results of
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Figure 10 (Color online) Residual error square versus the times of iteration
in case of β = 0.05 and n = 0, given by means of the HAM-based approach
using c0 = −1/4 and Ns = 40. Circle: 1st-order; square: 2nd-order; delta:
3rd-order.
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Figure 11 (Color online) The convergent results of the eigenvalue E0 given
by the HAM approach. Solid line: HAM approach; dashed line: 1st-order
perturbative approach.
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Table 9 Convergent results of the eigenvalue E0 of eq. (43) versus β, given
by means of the HAM-based approach

β E0 c0 Ns

0.01 0.507256 −1 40

0.03 0.520562 −0.4 40

0.05 0.532643 −0.25 40

0.1 0.559146 −0.1 40

0.2 0.602405 −0.05 40

0.5 0.696176 −0.01 55

0.75 0.754708 −0.005 60

1 0.803771 −0.002 70

2 0.951569 −0.002 70

2.5 1.009176 −0.002 75

3 1.060271 −0.002 75

3.5 1.106451 −0.002 75

4 1.148792 −0.002 75

4.5 1.187957 −0.001 85

5 1.224595 −0.001 85

6 1.291491 −0.001 90

7 1.3520 −0.0001 115

8 1.4072 −0.0001 115

10 1.5054 −0.0001 120

0 2
0

0.2

0.4

0.6

0.8

1.0

HAM approach

−2
x

0
ψ

Figure 12 (Color online) The convergent results of the eigenfunction ψ0(r)
given by the HAM approach. Solid line: β = 0.05; dashed line: β = 0.5;
dash-dotted line: β = 3.

E1, E5 and E10, as listed in Tables 10-12 and shown in
Figure 13.

4 Concluding remarks

A new non-perturbative approach is proposed to solve time-
independent Schrödinger equations in quantum mechanics. It
is based on the homotopy analysis method (HAM) [6-13] de-
veloped by the author for highly nonlinear equations. Unlike
perturbative methods, this HAM-based approach has nothing

Table 10 Convergent results of the eigenvalue E1 of eq. (43) versus β,
given by means of the HAM-based approach

β E1 c0 Ns

0.5 2.324406 −0.01 40

1 2.737893 −0.005 60

1.5 3.043448 −0.005 65

2 3.292875 −0.001 80

2.5 3.506740 −0.001 85

3 3.695680 −0.001 90

Table 11 Convergent results of the eigenvalue E5 of eq. (43) versus β,
given by means of the HAM-based approach

β E5 c0 Ns

0.1 7.899769 −0.1 40

0.2 9.196340 −0.05 50

0.3 10.166489 −0.02 55

0.4 10.960680 −0.01 70

0.5 11.648721 −0.01 80

0.55 11.960660 −0.005 85

Table 12 Convergent results of the eigenvalue E10 of eq. (43) versus β,
given by means of the HAM-based approach

β E10 c0 Ns

0.01 11.831401 −0.1 40

0.02 12.812700 −0.05 40

0.03 13.618898 −0.05 50

0.04 14.314838 −0.05 50

0.05 14.933266 −0.03 55

−1.0 −0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

0

4

8

12

16
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n = 5

n = 10

E
n

β

Figure 13 (Color online) The convergent results of the eigenvalue E1, E5

and E10 given by the HAM-based approach versus β. Solid line: n = 10;
dashed line: n = 5; dash-dotted line: n = 1.
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to do with small/large physical parameters. Besides, conver-
gent series solution can be obtained even if the disturbance is
far from the known status. A nonlinear harmonic oscillator is
used as an example to illustrate the validity of this approach
for disturbances that might be one thusand times larger than
the possible superior limit of the perturbative approach. This
HAM-based approach could provide us rigorous theoretical
results in quantum mechanics, which can be directly com-
pared with experimental data. Obviously, this is of great ben-
efit not only for improving the accuracy of experimental mea-
surements but also for validating physical theories.

Finally, it should be emphasized that the basic ideas of the
HAM-based approach have general meanings and thus can
be widely used to solve other kinds of equations in quantum
mechanics, such as many-body problems and so on, so as
to gain rigorous, reliable, convergent eigenvalues and eigen-
functions. It provides us an alternative to solve Schrödinger
equations in quantum mechanics.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 11432009, and 91752104). The author thanks Dr. Theo-
phanes E. Raptis in University of Athens, Laboratory of Physical Chemistry,
Greece, for his suggestion on applying the HAM to quantum mechanics.
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Appendix Brief description of perturbation
method

The perturbative approach in quantum mechanics can be
found in many textbooks [3-5]. Consider the Schödinger
equation

Hψn(r) = Enψn(r). (a1)

Write

H = H0 + H′,

where H,H0 are Hamiltonian operators, H′ is a small “distur-
bance” from H0. Assume that ψn can be expressed by

ψn(r) =
Ns∑

k=1

ckψ
(0)
k (r),

with

H0ψ
(0)
k (r) = E(0)

k ψ(0)
k (r), (a2)

where ψ(0)
k (r) and E(0)

k are the eigenfunction and eigenvalue
of the Hamiltonian operator H0.

Let λ denote a small parameter and write

H = H0 + λH′, (a3)

ψn(r) = ψ(0)
n +

+∞∑
k=1

ψ(k)
n (r) λk, (a4)

En = E(0)
n +

+∞∑
k=1

E(k)
n λk. (a5)

Substitute them into eq. (a1) and equate the like-power of λ,
we have the perturbation equations(

H0 − E(0)
n

)
ψ(0)

n = 0, (a6)
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H0 − E(0)

n

)
ψ(1)

n = E(1)
n ψ(0)

n − H′ψ(0)
n , (a7)(

H0 − E(0)
n

)
ψ(m)

n = E(m)
n ψ(0)

n − H′ψ(m−1)
n +

m−1∑
k=1

E(k)
n ψ(m−k)

n ,

m ≥ 2. (a8)

According to eq. (a2), the zeroth-order perturbation equation
(a6) is automatically satisfied. Multiplying

(
ψ(0)

n

)∗
on the both

sides of eq. (a7) and then integrating in the whole domain, we
have, since ψ(0)

n (r) is orthonormal and H0 is a Hermite opera-
tor, that

E(1)
n =

(
ψ(0)

n ,H′ψ(0)
n

)
= ∆̃(0)

n,n. (a9)

Write

ψ(m)
n =

∑
l,n

a(m)
n,l ψ

(0)
l

and substitute it into eq. (a7), we have∑
l,n

a(1)
n,l

(
E(0)

l − E(0)
n

)
ψ(0)

l = E(1)
n ψ(0)

n − H′ψ(0)
n . (a10)

Multiplying
(
ψ(0)

k

)∗
on the both sides of eq. (a7) and then in-

tegrating in the whole domain, we have in a similar way that

a(1)
n,l =

∆̃
(0)
l,n

E(0)
n − E(0)

l

, (a11)

where

∆̃
(0)
l,n =

(
ψ(0)

l ,H′ψ(0)
n

)
. (a12)

Similarly, we have for m ≥ 2 that

E(m)
n = ∆̃(m−1)

n,n −
m−1∑
k=1

E(k)
n a(m−k)

n,n , (a13)

a(m)
n,l =

∆̃
(m−1)
l,n −∑m

k=1 E(k)
n a(m−k)

n,l

E(0)
n − E(0)

l

, (a14)

where

∆̃
(m−1)
l,n =

(
ψ(0)

l ,H′ψ(m−1)
n

)
. (a15)

The Mth-order perturbation approximation reads

ψn(r) ≈ ψ(0)
n +

M∑
k=1

ψ(k)
n (r), (a16)

En ≈ E(0)
n +

M∑
k=1

E(k)
n . (a17)
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