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A B S T R A C T

Although the free-fall triple system has been numerically studied for more than one century, however, only four
collisionless periodic orbits have been found. In this paper, using a supercomputer and a new strategy for chaotic
dynamic systems, called “clean numerical simulation” (CNS), we successfully gained 316 collisionless periodic
orbits of the free-fall triple system with a few chosen values of mass ratios, including three collisionless periodic
orbits which were found before. Especially, 313 collisionless free-fall periodic orbits are entirely new. What’s
more, we can gain periodic free-fall three-body orbits in a random ratio of mass. Thus, this is a good example to
prove that there exist an infinite number of periodic solutions for the triple system. In addition, it is found that,
for a given ratio of mass, there exists a generalized Kepler’s third law for the periodic three-body system. All of
these would enrich our knowledge and deepen our understanding about the famous three-body problem as a
whole.

1. Introduction

The three-body problem was first studied by Newton (1687), and
attracted many famous mathematicians and physicists such as
Euler (1767), Lagrange (1772) and so on. Poincaré (1890) found that
solutions of three-body problem are rather sensitive to initial condi-
tions. His discovery of the so-called “sensitivity dependance on initial
conditions” (SDIC) laid the foundation for chaos theory. It well explains
why in three hundred years only three families of periodic solutions of
three-body system were discovered. These three families of periodic
orbits are the Euler–Lagrange family (Euler, 1767; Lagrange, 1772), the
Broucke–Hadjidemetriou–Hénon family of periodic orbits (Broucke,
1975; Hadjidemetriou, 1975; Hadjidemetriou and Christides, 1975;
Hénon, 1976; 1977) and the figure-eight orbit (Moore, 1993; Chenciner
and Montgomery, 2000). In Šuvakov and Dmitrašinović (2013) found
13 new periodic three-body orbits by means of numerical methods. In
recent years, periodic three-body problem have been paid much at-
tention (Iasko and Orlov, 2014; Šuvakov, 2014; Li and Liao, 2017; Li
et al., 2018; Šindik et al., 2018). Especially, Li and Liao (2017) pre-
sented more than six hundred new periodic solutions of triple system
with equal mass, and Li et al. (2018) further reported more than 1000
new periodic solutions of triple system in case of unequal mass, mainly
because they can accurately simulate orbits of chaotic triple systems by
using a new numerical strategy, i.e. clean numerical simulation (CNS)

(Liao, 2009; 2013; 2014; Liao and Wang, 2014; Liao and Li, 2015; Lin
et al., 2017). The detailed results of these orbits are given on the
website http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.

The initial conditions of the newly-found periodic orbits (Šuvakov
and Dmitrašinović, 2013; Iasko and Orlov, 2014; Šuvakov, 2014; Li and
Liao, 2017; Li et al., 2018) are isosceles collinear configurations.
However, these is another configuration, called the free-fall three-body
problem with the zero initial velocities and arbitrary ratios of masses,
which have been numerically investigated for more than one century.
The free-fall triple system is also called Pythagorean problem, which
was first numerically studied by Burrau (1913). Its first periodic orbit
with a binary collision was found by Szebehely and Peters (1967). Its
first collisionless periodic orbit was found by Standish (1970). In 1990s
Tanikawa and his colleagues (Tanikawa et al., 1995; Tanikawa, 2000)
reported some collision solutions of free-fall triple system.
Moeckel et al. (2012) proved the existence of periodic brake three-body
orbits (i.e., periodic free-fall three-body orbits) with collision in the
isosceles configuration. Tanikawa and Mikkola (2015) gained the per-
iods and initial conditions of some periodic free-fall three-body orbits
with collision. Yasko and Orlov (2015) found three collisionless peri-
odic orbits while searching periodic free-fall three-body orbits.
Orlov et al. (2016) investigated periodic solutions of the free-fall three-
body system with equal mass. In summary, so far, only four collisionless
periodic solutions for free-fall three-body system have been found.

https://doi.org/10.1016/j.newast.2019.01.003
Received 16 August 2018; Received in revised form 26 January 2019; Accepted 31 January 2019

⁎ Corresponding author at: Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
E-mail address: sjliao@sjtu.edu.cn (S. Liao).

New Astronomy 70 (2019) 22–26

Available online 01 February 2019
1384-1076/ © 2019 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/13841076
https://www.elsevier.com/locate/newast
https://doi.org/10.1016/j.newast.2019.01.003
http://numericaltank.sjtu.edu.cn/three-body/three-body.htm
https://doi.org/10.1016/j.newast.2019.01.003
mailto:sjliao@sjtu.edu.cn
https://doi.org/10.1016/j.newast.2019.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.newast.2019.01.003&domain=pdf


In this paper, we gain 316 collisionless periodic orbits for free-fall
three-body system with different mass ratios by means of the clean
numerical simulation (CNS) (Liao, 2009; 2013; 2014; Liao and Wang,
2014; Liao and Li, 2015; Lin et al., 2017), including the periodic orbit
found by Standish (1970) and two periodic orbits found by Yasko and
Orlov (2015). Especially, 313 collisionless free-fall periodic orbits are
entirely new.

2. Numerical approach of searching for periodic orbits

In this paper, we consider the planar Newtonian three-body pro-
blem. The differential equations of the three-body problem are
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where ri and mi are the position and mass of the ith body =i( 1, 2, 3), G
is the Newtonian constant of gravitation. Without loss of generality, we
assume =G 1 here.

Let us consider planar three-body problem with zero initial velo-
cities and arbitrary ratios of masses. As shown in Fig. 1, the initial lo-
cations of body-1 and body-2 are at points A ( 0.5, 0) and B (0.5,0),
respectively, and the initial position of body-3 is at the point C (x, y) in
the region D which is surrounded by the x and y axes and a circular
segment of unit radius with the point A (-0.5,0) as the centre.
Agekyan and Anosova demonstrated that all possible initial condition
configurations for planar free-fall triple system are included in the re-
gion D. Their excellent work greatly simplifies the considered problem.
Without loss of generality, let the Newtonian gravitation constant be
equal to one.

Because the initial positions of body-1 and body-2 are fixed at point
( 0.5, 0) and (0.5,0), respectively, and the initial position (x, y) of
body-3 determines the orbit of free-fall triple system. Here we denote y
(t)=(r1(t), r2(t), r3(t), r t( ),1 r t( ),2 r t( )3 ), where ri and r t( )i are the posi-
tions and velocities of the body-i (i=1,2,3), respectively. The periodic
orbits will return to initial condition =y yT( ) (0) at the time =t T ,
where T is the period. We locate the periodic free-fall three-body orbits
by finding zeros of the function
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Here we used the same strategy as that in our previous discovery of
more than 2000 new periodic orbits of three-body system (Li and Liao,

2017; Li et al., 2018). First, we scan the initial positions (x, y) of body-3
in region D with steps of = =x y 0.0001. We employ the ODE solver
dop853 (Hairer et al., 1993) to numerically solve the differential
equations of the free-fall triple system. The approximate initial condi-
tions and periods are selected when the function (2) is below 0.05.
Second, we use the Newton–Raphson method (Farantos, 1995; Lara and
Pelaez, 2002; Abad et al., 2011) to modify these approximate initial
conditions (x, y) and the periods T. However, since some periodic three-
body solutions might be lost by conventional numerical method with
double precision, we now solve the differential equations of the three-
body problem by using “clean numerical simulation” (CNS) (Liao, 2009;
2013; 2014; Liao and Wang, 2014; Liao and Li, 2015; Lin et al., 2017).
The CNS is based on the arbitrary order of Taylor series method (Barton
et al., 1971; Corliss and Chang, 1982; Barrio et al., 2005) in arbitrary
precision (Oyanarte, 1990; Viswanath, 2004), and a convergence ver-
ification by means of another simulation with even smaller numerical
noises. A periodic free-fall three-body orbit is obtained when the
function (2) is less than 10 6. The detail of numerical strategy is shown
in ref. Li and Liao (2017) and Li et al. (2018).

3. Results

We consider the periodic orbits are collisionless if the minimum
distance between the bodies is greater than 10 6 in the whole period.
We focused our numerical search on collisionless periodic orbits for
free-fall triple system with period less than 200 and minimum distance
between the bodies greater than 10 6. Similarly as we did before (Li and
Liao, 2017; Li et al., 2018), we use a topological method (Montgomery,
1998; Šuvakov and Dmitrašinović, 2014) to classify the periodic orbits.

There are two three-body relative coordinate vectors = r r( )1
2 1 2

and = +r r r( 2 )1
6 1 2 3 . With these two vectors, the positions of

three-body system can be mapped to a point on a unit space sphere, and
the Cartesian components of the point are
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where = +R 2 2 . There are three singular points (punctures) in the
space sphere, corresponding to the three binary collision in the real
space. A collisionless periodic orbit gives a closed curve around three
punctures on the shape sphere. With one puncture as the north pole, the
points of the sphere can be mapped to the plane with the other two
punctures by a stereographic projection. Then a close curve on the
shape sphere can be mapped to a plane with two punctures. The free
group words a and b represent a clockwise around the right-hand-side
puncture and counter-clockwise turn around the left-hand-side punc-
ture, respectively. The letters A and B denote the opposite direction of a
and b, respectively. The so-called “free group elements” of periodic
orbits w can be written as = …w w w w ,1 2 3 where wi is any one of a, b, A
and B. Two periodic orbits on the shape sphere are shown in Fig. 2. The
free group elements of F1(1, 0.8, 0.8) and F3(1, 0.8, 0.2) is BaBbAb and
BabBAb, respectively.

We found 30 collisionless periodic orbits in the free-fall triple
system with equal mass ( = = =m m m 11 2 3 ). Table S I in Supplementary
contains the periods and initial conditions of these periodic orbits. Their
free group elements are given in Table S VIII in Supplementary.

In addition, we also gained collisionless periodic free-fall solutions
of triple system in some cases of unequal masses, as shown in Table 1.
In summary, we totally found 316 collisionless periodic orbits in the
free-fall triple system with different mass ratios. The periods and initial
conditions of the periodic solutions are displayed in Tables S I-VII in
Supplementary, and their free group elements are given in Tables S VIII-

Fig. 1. The initial position of three bodies in the configuration space. The initial
positions of body-1 and body-2 are located at points A ( 0.5, 0) and B (0.5,0),
respectively. And the initial position of body-3 is replaced at the point C (x, y) in
the region D.
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XIII in Supplementary. The animation of these periodic orbits are pro-
vided on the website: http://numericaltank.sjtu.edu.cn/free-fall-3b/
free-fall-3b.htm. The periodic orbit F1(0.6, 0.8, 1) is the one found by
Standish (1970). The periodic orbits F1(1, 1, 1) and F2(1, 1, 1) are the
ones named Oribt 16 and 17 in Yasko and Orlov (2015), respectively.
Except for these three periodic orbits, 313 collisionless periodic free-fall
three-body orbits are newly-found. Note that the periodic orbit named
Orbit 19 in ref. Yasko and Orlov (2015) is not found in this paper,
because the initial condition of that orbit is not in the region-D con-
sidered in this paper.

A few cases of mass ratio listed in Table 2 are considered here. Note
that we find 19 collisionless periodic orbits with masses =m 0.393,1

=m 0.2882 and =m 0.6623 which are randomly generated between 0
and 1. Therefore, theoretically speaking, we can gain collisionless
periodic solutions of the free-fall three-body system in arbitrary ratio
of mass. What’s more, we obtain 48 collisionless periodic orbits even
with large mass ratio (i.e. =m 1,1 =m 0.12 and =m 0.013 ). So, theore-
tically speaking, the number of periodic solutions of the free-fall three-

body system is infinite.
All bodies of these periodic orbits have zero velocities at time

=t T/2, where T is the period. After =t T/2, the three bodies will go
back to the initial positions along the original trajectories. For example,
the periods and initial conditions of six newly-found collisionless per-
iodic free-fall three-body orbits are presented in Table 2, and their
trajectories are shown in Fig. 3. So, it seems that all periodic trajectories
of the free-fall three-body system are not closed. This is quite different
from the periodic solutions of triple system with nonzero initial velo-
cities.

Li and Liao (2017) found that the periodic solutions with equal mass
and initial conditions with isosceles collinear configurations have scale-
invariant average period =T T L E¯ * ( / ) | | 2.433,f

3/2 where T, Lf and E
are the period, the number of letter of free group word, total energy of
the system, respectively. For the collisionless free-fall periodic orbits
with equal mass ( = = =m m m 11 2 3 ) found in this paper, the scale-in-
variant average period T̄* 2.363, is close to 2.433 with error of 3%.
The results imply that the scale-invariant average period of these per-
iodic orbits with equal mass ( = = =m m m 11 2 3 ) is approximate to a
universal constant for different configurations, which are considered as
generalized Kepler’s third law for the periodic three-body system
(Dmitrašinović and Šuvakov, 2015; Li and Liao, 2017; Li et al., 2018).
For periodic orbits with unequal mass and initial conditions with iso-
sceles collinear configurations, Li et al. (2018) found that the scale-
invariant average period grows linearly with m3 in case of = =m m 11 2 .
In this paper, for periodic free-fall orbits with =m 11 and =m 0.8,2
scale-invariant average period is 1.663, 1.191, 0.776 and 0.527 for m3

= 0.8, 0.6, 0.4 and 0.2, respectively. It is also found that the scale-
invariant average period grows linearly with m3, as shown in Fig. 4.
This confirms again that these should exist a generalized Kepler’s third
law for the periodic three-body system.

4. Conclusions

Although the free-fall triple system have been numerically studied
for more than one century, however, only four collisionless periodic
orbits have been found. In this paper, we report 316 collisionless per-
iodic solutions of the free-fall triple system with a few mass ratios, in-
cluding the periodic orbit found by Standish (1970) and two periodic
orbits found by Yasko and Orlov (2015). Especially, 313 periodic orbits
are entirely new. It should be emphasized that we can gain periodic
solutions of the free-fall three-body system in random ratio of mass so
that there should exist an infinite number of periodic orbits of the free-
fall triple system. In addition, it is found that, in case of a randomly
given ratio of mass, there always exists a generalized Kepler’s third law

Fig. 2. The shape sphere of two periodic orbits: (a) F1(1, 0.8, 0.8) and (b) F3(1, 0.8, 0.2).

Table 1
The number of periodic orbits with different masses.

m1 m2 m3 Number of periodic orbits

1 1 1 30
1 0.8 0.8 29
1 0.8 0.6 69
1 0.8 0.4 44
1 0.8 0.2 32
0.6 0.8 1 30
1 0.412 0.267 15
0.393 0.288 0.662 19
1 0.1 0.01 48

Table 2
The initial conditions and periods T of the new collisionless periodic free-fall
orbits in the case of =r (0) ( 0.5, 0),1 =r (0) (0.5, 0),2 =r x y(0) ( , ),3

= = =r r r(0) (0) (0) (0, 0)1 2 3 and the Newtonian constant of gravitation =G 1.

Fi(m1, m2, m3) x y T

F10(1, 1, 1) 0.3089693008 0.4236727692 4.8914942162
F1(1, 0.8, 0.8) 0.0009114239 0.3019805958 1.8286248401
F24(1, 0.8, 0.8) 0.1527845023 0.068494294 7.5001089956
F5(1, 0.8, 0.6) 0.129088109 0.4010761427 2.500764871
F27(1, 0.8, 0.4) 0.083924021 0.3307729197 5.3174336486
F6(1, 0.8, 0.2) 0.1310631652 0.3036588095 2.9464698551
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for the periodic free-fall three-body system. All of these would enrich
our knowledge and deepen our understanding about the famous three-
body problem as a whole.
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