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a b s t r a c t

In this paper, an extremely accurate numerical algorithm, namely the ‘‘clean numerical
simulation’’ (CNS), is proposed to accurately simulate the propagation of micro-level inher-
ent physical uncertainty of chaotic dynamic systems. The chaotic Hamiltonian Hénon–
Heiles system for motion of stars orbiting in a plane about the galactic center is used as
an example to show its basic ideas and validity. Based on Taylor expansion at rather
high-order and MP (multiple precision) data in very high accuracy, the CNS approach
can provide reliable trajectories of the chaotic system in a finite interval t 2 [0,Tc], together
with an explicit estimation of the critical time Tc. Besides, the residual and round-off errors
are verified and estimated carefully by means of different time-step Dt, different precision
of data, and different order M of Taylor expansion. In this way, the numerical noises of the
CNS can be reduced to a required level, i.e. the CNS is a rigorous algorithm. It is illustrated
that, for the considered problem, the truncation and round-off errors of the CNS can be
reduced even to the level of 10�1244 and 10�1000, respectively, so that the micro-level inher-
ent physical uncertainty of the initial condition (in the level of 10�60) of the Hénon–Heiles
system can be investigated accurately. It is found that, due to the sensitive dependence on
initial condition (SDIC) of chaos, the micro-level inherent physical uncertainty of the posi-
tion and velocity of a star transfers into the macroscopic randomness of motion. Thus,
chaos might be a bridge from the micro-level inherent physical uncertainty to the macro-
scopic randomness in nature. This might provide us a new explanation to the SDIC of chaos
from the physical viewpoint.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Using high performance digit computers, a lot of com-
plicated problems in science, finance and engineering have
been solved with satisfied accuracy. However, there exist
some problems which are still rather difficult to solve even
by means of the most advanced computers. One of them is
the propagation of micro-level inherent physical uncer-
tainty of chaotic dynamical systems.

It is well-known that all numerical simulations are not
‘‘clean’’: there exist more or less numerical noises such as
truncation and round-off errors, which greatly depend on
numerical algorithms. In most cases, such kind of numeri-
cal noises are much larger than the micro-level inherent
physical uncertainty of dynamic systems under consider-
ation, so that the micro-level inherent uncertainty is com-
pletely lost in the numerical noise. This becomes more
serious for chaotic dynamic systems, which have the sensi-
tive dependence on initial conditions (SDIC), i.e. very tiny
change of initial condition leads to great difference of
numerical simulations of chaotic systems so that long-
term prediction is impossible. Thus, very fine numerical
algorithms need be developed to accurately simulate the

0960-0779/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.chaos.2012.11.009

⇑ Address: State Key Lab of Ocean Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China.

E-mail address: sjliao@sjtu.edu.cn

Chaos, Solitons & Fractals 47 (2013) 1–12

Contents lists available at SciVerse ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier .com/locate /chaos

SJLIAO-A2010
Highlight

SJLIAO-A2010
Highlight

SJLIAO-A2010
Highlight

SJLIAO-A2010
Highlight

shijun
高亮



Author's personal copy

propagation of micro-level inherent physical uncertainty
of chaotic dynamic systems. This is the motivation of this
article.

In this article, a kind of numerical algorithm in a rather
high accuracy, called the ‘‘clean numerical simulation’’
(CNS), is proposed to accurately simulate propagation of
micro-level inherent physical uncertainty of chaotic dy-
namic systems. Here, the word ‘‘clean’’ means that the
truncation and round-off errors can be controlled to an
arbitrary level that is much less than the micro-level inher-
ent physical uncertainty of the initial condition so that the
numerical noises can be neglected in a given finite interval
of time for the propagation of uncertainty. A chaotic Ham-
iltonian system proposed by Hénon and Heiles [10] is used
to show its validity. The basic ideas of the so-called clean
numerical simulation (CNS) are given in Section 2, fol-
lowed by the investigation of the micro-level uncertainty
of the system in Section 3 and its propagation in Section 4
from statistical viewpoint. Conclusions and discussions are
given in Section 5.

2. The numerical algorithm of the CNS

2.1. Basic ideas

Hénon and Heiles [10] proposed a Hamiltonian system
of equations

€xðtÞ ¼ �xðtÞ � 2xðtÞyðtÞ; ð1Þ
€yðtÞ ¼ �yðtÞ � x2ðtÞ þ y2ðtÞ; ð2Þ

to approximate the motion of stars orbiting in a plane
about the galactic center, where the dot denotes the differ-
entiation with respect to the time t. Its solution is chaotic
for some initial conditions, such as

xð0Þ ¼ 14
25

; yð0Þ ¼ 0; _xð0Þ ¼ 0; _yð0Þ ¼ 0; ð3Þ

as mentioned by Sprott [23]. Without loss of generality, let
us use this chaotic system to describe the basic ideas of the
CNS and to illustrate its validity.

It is well-known [5,8,11,13,14,22,23,29] that chaotic dy-
namic systems have the sensitive dependence on initial
conditions (SDIC), i.e. a tiny change of initial conditions
leads to great difference of numerical simulations at large
time, so that long-term prediction of chaos is impossible.
It is well-known that all numerical simulations contain
the unavoidable truncation and round-off errors at each
time-step. Generally speaking, most of traditional numeri-
cal simulations of chaos are mixed with these numerical
noises and thus are not ‘‘clean’’. Because these numerical
noises of traditional numerical approaches are generally
much larger than the micro-level inherent physical uncer-
tainty of initial condition, the propagation of such kind of
physical uncertainty of chaotic dynamic systems has never
been studied accurately, to the best of the author’s
knowledge.

For numerical simulations of chaotic dynamic system,
we must take rigorous account of numerical errors and
rounding, because ‘‘what is observed on the computer
screen would be completely unrelated to what was meant

to be simulated’’, as pointed out by Galatolo et al. [7]. The
methods of shadowing may gain accurate numerical simu-
lations closed to true trajectories of hyperbolic dynamic
systems, but fail to have long shadowing trajectories for
those with a fluctuating number of positive finite-time
Lyapunov exponents, as pointed out by Dawson et al. [3].
Besides, it is found that numerical simulations of chaotic
systems given by low-order Runge–Kutta methods or
Taylor expansion approaches have sensitive dependence
not only on initial conditions but also on numerical algo-
rithms, so that different numerical schemes might lead to
completely different long-term predictions, as pointed
out by Lorenz [15,16] and Teixeira et al. [20,24].

In order to gain reliable chaotic solutions in a long inter-
val of time, Liao [12] developed a numerical technique
with extremely high accuracy, called here the ‘‘clean
numerical simulation’’ (CNS). Using the computer algebra
system Mathematica with the 400th-order Taylor expan-
sion for continuous functions and data in accuracy of
800-digit precision, Liao [12] gained, for the first time,
the reliable numerical results of chaotic solution of Lorenz
equation in a long interval 0 6 t 6 1175 LTU (Lorenz time
unit). The basic ideas of the CNS are simple and straightfor-
ward. Since the order of Taylor expansion is very high, the
corresponding truncation error is rather small. Besides,
since all data are expressed in the accuracy of large-num-
ber digit precision, the small enough round-off error is
guaranteed. Thus, as long as the order of Taylor expansion
is high enough and the digit-number of data is long en-
ough, both of the truncation and round-off errors can be
much smaller than the micro-level inherent physical
uncertainty so that the propagation of micro-level uncer-
tainty of the initial condition can be simulated accurately
in a long enough interval of time. Here, the ‘‘clean’’ numer-
ical simulation means that the truncation and round-off er-
rors can be controlled to an arbitrary level so that the
numerical noises can be neglected in a given finite interval
of time, as shown later. Currently, Liao’s ‘‘clean’’ chaotic
solution [12] of Lorenz equation is confirmed by Wang
et al. [27] to be a reliable trajectory of Lorenz equation in
the interval 0 6 t 6 1175 LTU, who used parallel computa-
tion with the multiple precision (MP) library: they gained
reliable chaotic solution of Lorenz equation up to 2500
LTU by means of the 1000th-order Taylor expansion and
data in the accuracy of 2100-digit precision. Note that,
similar to the so-called shadowing trajectories given by
the shadowing approach [21], such kind of ‘‘clean’’ numer-
ical simulations given by the CNS are close to true trajecto-
ries of chaotic systems.

The CNS is based on Taylor expansion at a rather high-
order. Let (xn,yn) and ð _xn; _ynÞ denote the position and veloc-
ity at the time tn = nDt, where Dt is a constant time-step.
Assume that x(t), y(t) are M + 1 times differentiable on
the open interval (t, t + Dt) and continuous on the closed
interval [t, t + Dt]. According to Taylor theorem, we have

xðt þ DtÞ ¼ xðtÞ þ
XM

n¼1

anðtÞðDtÞn þ Rx
MðtÞ; ð4Þ

yðt þ DtÞ ¼ yðtÞ þ
Xþ1
n¼1

bnðtÞðDtÞn þ Ry
MðtÞ; ð5Þ

2 S. Liao / Chaos, Solitons & Fractals 47 (2013) 1–12



Author's personal copy

where

anðtÞ ¼
1
n!

dnxðtÞ
dtn ¼ xðnÞðtÞ

n!
; bnðtÞ ¼

1
n!

dnyðtÞ
dtn ¼ yðnÞðtÞ

n!
ð6Þ

and

Rx
MðtÞ ¼ aMþ1ðn1ÞðDtÞMþ1

; t 6 n1 6 t þ Dt; ð7Þ
Ry

MðtÞ ¼ bMþ1ðn2ÞðDtÞMþ1
; t 6 n2 6 t þ Dt; ð8Þ

are remainders of x(t) and y(t), respectively. Assuming that

jaMþ1ðtÞj < l; jbMþ1ðtÞj < l; t > 0; ð9Þ

it holds obviously

Rx
MðtÞ

�� �� < lðDtÞMþ1
; Ry

MðtÞ
�� �� < lðDtÞMþ1

: ð10Þ

Thus, we have the following theorem
Theorem of truncation error If x(t), y(t) are M + 1 times

differentiable on the open interval (t, t + Dt) and
continuous on the closed interval [t, t + Dt], and besides if
jx(M+1)(t)j/(M + 1)! < l and jy(M+1)(t)j/(M + 1)! < l for t > 0,
where l > 0 is a constant, then the Taylor expansion

xðt þ DtÞ � xðtÞ þ
XM

n¼1

anðDtÞn; ð11Þ

yðt þ DtÞ � yðtÞ þ
Xþ1
n¼1

bnðDtÞn; ð12Þ

have the truncation errors less than l(Dt)M+1.
The round-off error is determined by the accuracy of

data. To avoid large round-off error, all data are expressed
in high accuracy of long-digit precision. For example, one
can use data in accuracy of 2M-digit precision, where M
is the order of Taylor expansions (11) and (12). Thus, for
large enough M, the round-off error are rather small. For
example, in case of M = 70, all data are expressed in accu-
racy of 140-digit precision so that the corresponding
round-off error is in the level of 10�140. Such kind of high
precision data can be gained easily by means of computer
algebra system like Mathematica and Maple, or the multi-
ple precision (MP) library for FORTRAN and C. Obviously,
the larger the value of M, the smaller the truncation and
the round-off errors. In this meaning, we can control the
truncation and round-off errors to a required level.

The coefficients an and bn can be calculated in a recur-
sive way. Assume that a0 ¼ xn; b0 ¼ yn; a1 ¼ _xn; b1 ¼ _yn are
known. Substituting the Taylor expansions (11) and (12)
into the original governing Eqs. (1) and (2) of the Hénon
and Heiles system [10] and equaling the like power of
Dt = t � tn, we have the recursion formula

anþ2 ¼ �
an þ 2

Pn
k¼0akbn�k

ðnþ 1Þðnþ 2Þ ; ð13Þ

bnþ2 ¼ �
bn þ

Pn
k¼0ðakan�k � bkbn�kÞ
ðnþ 1Þðnþ 2Þ ð14Þ

for n P 0. Then, we have the Mth-order Taylor
approximation

xnþ1 �
XM

k¼0

akðDtÞk; ynþ1 �
XM

k¼0

bkðDtÞk ð15Þ

and

_xnþ1 �
XM�1

k¼0

ðkþ 1Þakþ1ðDtÞk; ð16Þ

_ynþ1 �
XM�1

k¼0

ðkþ 1Þbkþ1ðDtÞk ð17Þ

at the time tn+1 = (n + 1)Dt. Besides, all data are expressed
here in the accuracy of 2M-digit precision (we use the com-
puter algebra system Mathematica). In this way, one gains
rather accurate numerical simulations of x(t) and y(t) step
by step in a finite interval of time, with extremely small
truncation and round-off errors at each time-step, as veri-
fied below.

For short time, both of the truncation and round-off er-
rors are so small that the numerical results are often close
to the true trajectory. This is the reason why most of
numerical results of chaotic systems given by different ap-
proaches match well in a short time from the beginning. It
is widely believed by the scientific community that such
kind of numerical results of chaos in a short time is reli-
able. However, due to the sensitivity on initial conditions
of chaotic dynamic system, the truncation and round-off
errors are amplified quickly so that the numerical results
depart greatly from the true trajectory after a critical time
Tc. Here, Tc denotes such a maximum time that numerical
results gained by means of different numerical approaches
(for example, with different M and Dt of the CNS) are close
to the true trajectory of chaotic solution in the interval
0 6 t 6 Tc. In other words, the numerical results are
‘‘clean’’, i.e. without observable influence by the round-
off and truncation errors, and thus is reliable in the finite
interval t 2 [0,Tc]. Here, the so-called critical predictable
time Tc is similar to the so-called shadowing time for the
shadowing approach [3,21]. Mathematically, let u1(t) and
u2(t) denote two time-series given by different numerical
approaches. The so-called ‘‘critical time’’ Tc is determined
by the criteria of decoupling

1� u1

u2

����
���� > d; _u1 _u2 < ��; at t ¼ Tc; ð18Þ

where � > 0 and d > 0 are two small constants (� = 1 and
d = 5% are used in this article). In this paper, the critical
time Tc is determined by the CNS approach, i.e. the values
of M, Dt and the accuracy of data. Obviously, the larger M,
the smaller Dt and the higher accuracy of data, the longer
time interval [0,Tc] in which the numerical results match
well with the true trajectory. For given reasonable Dt and
high accuracy of data, the larger the value of M, the larger
Tc. So, Tc for given M is determined by comparing the cor-
responding CNS result with that obtained by means of a
larger value of M with the same initial condition, the same
Dt and the same accuracy of data.

The key step of the CNS is to provide a good estimation
of the critical time Tc, which is an important characteristic
length-scale of time for the CNS. Without loss of generality,
we use in this article the Mth-order Taylor expansions (11)
and (12) with Dt = 1/10 and the data in accuracy of (2M)-
digit precision. Comparing different CNS results given by
different M, we gain the different values of Tc for different
M by means of the criteria (18). Then, by means of
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regression analysis, it is found that Tc can be approximately
expressed by

Tc � 32ð1þMÞ: ð19Þ

For details of how to gain the above estimation of Tc, please
refer to Liao [12]. Seriously speaking, given two time series
u1(t) and u2(t), different small values of � andd might give a
little different value of Tc. However, it is found that the
estimation expression of Tc is not sensitive to the values
of � and d, mainly because chaotic systems are sensitive
to numerical noises. Thus, (19) provides us a good estima-
tion of the critical time Tc. For the sake of guarantee, it is
better to choose a little larger value of M than that esti-
mated by (19) in practice. For example, in order to gain
reliable chaotic solution of the Hénon and Heiles system
[10] in the interval 0 6 t 6 2000, say, Tc = 2000, we use
the 70th-order1 Taylor expansion (with Dt = 1/10) and the
data in accuracy of 140-digit precision. It should be men-
tioned here that (19) is consistent with the conclusion about
methods of shadowing [21]: the shadowing time have
power law dependencies on the level of numerical noise.

Thus, given an arbitrary value of Tc, we can always cal-
culate such a corresponding order M of Taylor expansions
that the corresponding CNS result is reliable in the interval
t 2 [0,Tc], as verified below. In other words, given the criti-
cal time Tc, the choice of the time-step Dt and the order M
of Taylor expansion for reliable trajectories in t 2 [0,Tc] is
under control. In this meanings, the CNS approach can be
regarded as a ‘‘rigorous’’ one.

2.2. Validity of numerical simulations

As mentioned before, the larger the order M of Taylor
expansion and the more accurate the data, the better the
corresponding CNS results of chaotic system (1) and (2).
The CNS results at t = 500, 1000, 1500 and 2000 given by
M = 70 in case of the initial condition (3) are listed in
Table 1.

Is it a reliable trajectory of the chaotic system (1)–(3) in
the interval 0 6 t 6 2000? To verify its validity, we re-
peated computations by means of Dt = 1/10 and M = 100,
150, 200, 300, 500, respectively, and found that all of them
give exactly the same trajectory in the interval
0 6 t 6 2000, as listed in Table 1. Besides, even using a
smaller time-setp Dt = 1/20 and Dt = 1/100 of the chaotic
system (1)–(3), we always gain the exactly same trajectory
in the finite interval 0 6 t 6 2000 by means of M = 100,
150, 200, 300 and 500, respectively. All of these indicate
that the CNS approach indeed provide us a reliable trajec-
tory of the chaotic system (1) and (2) under the initial con-
dition (3) in the finite interval 0 6 t 6 2000.

To verify the CNS results, let us further consider the le-
vel of truncation and round-off errors. In case of M = 70 and
D t = 1/10, the round-off error is in the level of 10�140. The
corresponding truncation error of the CNS approach can be
roughly estimated in the following way. According to our

CNS results, the maximum values of ja70j and jb70j are
6.1 � 10�34 and 6.7 � 10�34, respectively. Since two diver-
gent series decouple quickly due to the sensitive depen-
dence on numerical noises, the Taylor series should be
convergent in the interval t 2 [0,Tc], i.e.

ja71jDt
ja70j

< 1;
jb71jDt
jb70j

< 1:

Thus, we have the estimation

ja71j < ja70j=Dt < 6:1� 10�33; jb71j < jb70j=Dt

< 6:7� 10�33:

Although there exist some uncertainty in the above deduc-
tion, we have many reasons to assume that2

ja71j < 10�29; jb71j < 10�29; ð20Þ

i.e. l = 10�29. Then, according to (10), the truncation errors
should be less than 10�100, which is rather small. Similarly,
the truncation errors in case of Dt = 1/10 and M = 100, 150,
200, 300 and 500 are less than 10�145, 10�219, 10�294,
10�444 and 10�744, respectively, as shown in Table 2.

Similarly, in case of M = 70 and Dt = 1/20, the maximum
CNS results of ja70j and jb70j are 6.1 � 10�34 and
6.9 � 10�34, respectively, so that the two inequalities in
(20) still hold, say, we have the same constantl = 10�29

for (9) to be valid, although the smaller time step Dt is
used. It is found that, in case of M = 70 with much smaller
time-step Dt = 1/100, the corresponding maximum CNS
values of ja70j and jb70j are 6.2 � 10�34 and 7.1 � 10�34,
which are very close to those found in case of M = 70 with
Dt = 1/10 and Dt = 1/20, so that we still have the same con-
stant l = 10�29 for (9) to be valid! In fact, according to our

Table 1
Reliable numerical results of Hénon and Heiles’ chaotic system (1)–(3)
given by M = 70 and Dt = 1/10 with data in accuracy of 140-digit precision.

t x(t) y(t)

500 0.19861766 �0.23842431
1000 �0.04915404 �0.31971648
1100 �0.48949729 �0.04052161
1200 �0.04886847 0.77797491
1300 0.03097135 0.32401254
1500 0.03489977 0.43408169
2000 0.44371428 �0.30558921

Table 2
Estimated level of the truncation and round-off errors of the CNS results of
the chaotic system (1)–(3) in case of Dt = 1/10.

M Constant l for (9) Truncation error Round-off error

70 10�29 10�100 10�140

100 10�44 10�145 10�200

150 10�68 10�219 10�300

200 10�93 10�294 10�400

300 10�143 10�444 10�600

500 10�243 10�744 10�1000

1 The estimation formula (19) gives M � 62 for Tc = 2000. Considering
that (19) is an estimation formula for the chaotic Hamiltonian Hénon-
Heiles system, we choose M = 70 so as to ensure that the CNS results are
indeed reliable trajectories in the interval 0 6 t 6 2000.

2 Here, we multiply the values at the right-hand side of the above
expressions by 104 and replace the number 6.1 and 6.9 by 1.0 for the sake of
simplicity.
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numerical simulations based on the CNS approach, it is
found that, for the same M but different time-step
Dt 6 1/10, the two inequalities in (9) indeed hold with
the same constant l, as shown in Tables 2–4. All of these
verify the validation of (9) and therefore the correction of
our estimation for the truncation errors.

Note that, the larger the order M of Taylor expansion
and the smaller the time-step Dt, the smaller the trunca-
tion and round-off errors, as shown in Tables 2–4. Espe-
cially, in case of M = 500 and Dt = 1/100, the
corresponding truncation error is in the level of 10�1244

and the round-off error is in the level of 10�1000, respec-
tively, which are much smaller than those given by
M = 70 and Dt = 1/10, so that we have many reasons to be-
lieve that the numerical result given by M = 500 and
Dt = 1/100 is much closer to the true trajectory of chaotic
system (1) and (2) under the given initial condition (3).
However, it should be emphasized that all of our CNS re-
sults given by M P 70 and Dt 6 1/10 are the same as those
listed in Table 1. In other words, the CNS provides us the
chaotic results that are independent of not only the order
M of Taylor expansion but also the time-step Dt and the
data precision. This guarantees that our CNS results given
by means of 70th-order Taylor expansion and data in accu-
racy of 140-digit precision are indeed a true, reliable tra-
jectory of the chaotic dynamic system (1) and (2) with
the initial condition (3), at least in the interval t 2 [0,2000].

According to Tables 2–4, the truncation and round-off
error of the CNS approach can be decreased to the level
of 10�1244 and 10�1000 (by means of Dt = 1/100 and
M = 500), respectively. Thus, theoretically speaking, the
truncation and round-off error of the CNS approach can
be reduced to a required level. Besides, the CNS results gi-
ven by Dt = 1/10 and M = 70 agree well (in the accuracy of
8-digit precision) with all of the CNS results by the larger
M P 70 and/or the smaller time-step Dt 6 1/10. All of
these indicate that the CNS results give the reliable

trajectories of the chaotic system, and the CNS is a rigorous
approach.

In addition, to show the sensitive dependence on initial
condition, let us consider a different initial condition

xð0Þ ¼ 14
25

; yð0Þ ¼ 10�60; _xð0Þ ¼ 0; _yð0Þ ¼ 0 ð21Þ

with a rather tiny difference of y(0), i.e. y(0) = 10�60, from
the previous initial condition (3). The corresponding CNS
results given by Dt = 1/10, M = 70 and data in accuracy of
140-digit precision are listed in Table 5. To verify that it
is a reliable trajectory of the chaotic system 1, 2 and 21
in the interval 0 6 t 6 2000, we repeat the CNS approach
by means of Dt = 1/10, 1/20 and M = 100, 150, 200, 300,
500, respectively, and always obtain the exactly same re-
sults in the interval t 2 [0,2000] as those listed in Table 5.
Thus, the CNS approach indeed provides the true trajectory
of the chaotic dynamic system (1), (2) and (21) in the re-
stricted interval 0 6 t 6 2000. Note that, the initial condi-
tion (21) with y(0) = 10�60 has a very tiny difference from
(3) with y (0) = 0. According to Tables 1 and 5, the two reli-
able (or shadowing) trajectories corresponding respec-
tively to the different initial conditions (3) and (21),
match well each other in the interval 0 6 t 6 1100. Even
at t = 1200, they still match in accuracy of 5-digit precision.
However, due to the sensitive dependance on initial condi-
tion, the two reliable (or shadowing) trajectories com-
pletely depart from each other thereafter, although their
initial conditions have only a tiny difference in the mi-
cro-level 10�60.

All of these indicate that the CNS results given by
Dt = 1/10, M = 70 and data in the accuracy of 140-digit pre-
cision are indeed reliable in the interval t 2 [0,2000]. In
other words, the CNS results given by M = 70 and Dt = 1/10
can be regarded as a kind of ‘‘shadowing trajectory’’ of the
chaotic system, as mentioned by Dawson et al. [3], but in a
restricted interval 0 6 t 6 2000.

It should be emphasized that the difference 10�60 is in-
deed rather small, which is however much larger than the
truncation error in the level of 10�100 and the round-off er-
ror in the level of 10�140 of the CNS approach. Due to this
reason, the CNS provides us a tool to accurately investigate
the propagation of the micro-level inherent physical
uncertainty of chaotic Hénon–Heiles system, which is at
the level of 10�60 that is much larger than the numerical
noises of the CNS, as shown below.

Table 3
Estimated level of the truncation and round-off errors of the CNS results of
the chaotic system (1)–(3) in case of Dt = 1/20.

M Constant l for (9) Truncation error Round-off error

70 10�29 10�122 10�140

100 10�44 10�176 10�200

150 10�68 10�265 10�300

200 10�93 10�355 10�400

300 10�143 10�535 10�600

500 10�243 10�895 10�1000

Table 4
Estimated level of the truncation and round-off errors of the CNS results of
the chaotic system (1)–(3) in case of Dt = 1/100.

M Constant l for (9) Truncation error Round-off error

70 10�29 10�170 10�140

100 10�44 10�245 10�200

150 10�68 10�369 10�300

200 10�93 10�494 10�400

300 10�143 10�744 10�600

500 10�243 10�1244 10�1000

Table 5
Reliable numerical results of Hénon and Heiles’ chaotic system (1) and (2)
under a different initial condition (21) given by M = 70 and Dt = 1/10 with
data in accuracy of 140-digit precision.

t x(t) y(t)

500 0.19861766 �0.23842431
1000 �0.04915404 �0.31971648
1100 �0.48949729 �0.04052161
1200 �0.04886067 0.77797896
1300 0.42344110 �0.24151441
1500 �0.17190612 �0.21349514
2000 0.03364286 0.17136302
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3. The micro-level physical uncertainty

Many, although not all, mathematical models have clear
physical background. A good model for physical problems
often remains the fundamental properties and provides
us a way to investigate and predict some of related physi-
cal phenomenon. For example, the law of Newtonian grav-
itation can describe and predict the motion of the moon or
a satellite accurately. Besides, many CFD (computational
fluid dynamics) software based on mathematical models
can predict the flows about a ship and an airplane in an
acceptable accuracy. So, many of mathematical models re-
veal physical truths of the related phenomenon.

Eqs. (1) and (2) provide us a model for the motion of a
star orbiting in a plane about the galactic center, which
has very clear physical background. In general, a good
mathematical model should remain the key physical char-
acteristics of the corresponding natural phenomena. Since
the Hénon–Heiles system has been widely accepted by sci-
entific community, we have many reasons to believe that
(1) and (2) as a mathematical model process the funda-
mental physical characteristics of the motion of a star
orbiting in a plane about the galactic center.

The kinetic status of a star is determined by its position
and velocity. In the frame of Newtonian gravity law, it is
believed that the kinetic status of a star is inherently exact
and the uncertainty of position and velocity come from the
imperfect measure equipments which provide limited
knowledge. However, according to de Broglie [4], this tra-
ditional idea is wrong: the position of a star contains inher-
ent uncertainty. Besides, the quantum fluctuation might
influence the existence of the so-called ‘‘objective random-
ness’’, which is independent of any experimental accuracy
of the observations or limited knowledge of initial condi-
tions, as suggested by Consoli et al. [2]. Furthermore, ‘‘all
the sources of complexity examined so far are actually
channels for the amplification of naturally occurring ran-
domness in the physical world’’, as suggested by Allegrini
et al. [1].

It is a common belief of the scientific community that
the microscopic phenomenon are essentially uncertain
and random. To show this point, let us consider some typ-
ical length scales of microscopic phenomenon widely used
in modern physics. For example, Bohr radius

r ¼ �h2

mee2 � 5:2917720859ð36Þ � 10�11 ðmÞ

is the approximate size of a hydrogen atom, where ⁄ is a re-
duced Planck’s constant, me is the electron mass, and e is
the elementary charge, respectively. Besides, Compton
wavelength Lc = ⁄/(mc) is a quantum mechanical property
of a particle, i.e. the wavelength of a photon whose energy
is the same as the rest-mass energy of the particle, where
m is the rest-mass of the particle and c is the speed of light.
It is the length scale at which quantum field theory be-
comes important. The value for the Compton wavelength
of the electron is

Lc � 2:4263102175ð33Þ � 10�12 ðmÞ:

In addition, the Planck length

lP ¼
ffiffiffiffiffiffi
�hG
c3

r
� 1:616252ð81Þ � 10�35 ðmÞ ð22Þ

is the length scale at which quantum mechanics, gravity
and relativity [6] all interact very strongly, where c is the
speed of light in a vacuum, G is the gravitational constant,
and ⁄ is the reduced Planck constant. Especially, according
to the string theory [19], the Planck length is the order of
magnitude of the oscillating strings that form elementary
particles, and shorter length do not make physical senses. Be-
sides, in some forms of quantum gravity, it becomes impos-
sible to determine the difference between two locations less
than one Planck length apart. Therefore, in the accuracy of
the Planck length level, the position of a star is inherently
uncertain, so is its velocity. Note that this kind of micro-
scopic physical uncertainty is inherent and has nothing to
do with the Heisenberg uncertainty principle [9] and the
ability of human being.

On the other hand, according to de Broglie [4], any a
body has the so-called wave-particle duality, and the
length of the so-called de Broglie wave is given by

k ¼ h
mv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

c

� �2
r

; ð23Þ

where m is the rest mass, v denotes the velocity of the
body, c is the speed of light, h is the Planck’s constant,
respectively. Note that, the de Broglie’s wave of a body
has non-zero amplitude, meaning that the position is
uncertain: it could be almost anywhere along the wave
packet. Thus, according to the de Broglie’s wave-particle
duality, the position of a star is inherent uncertain, too.

Therefore, it is reasonable for us to assume that the mi-
cro-level inherent fluctuation of position of a star shorter
than the Planck length lp is essentially uncertain and/or
random.

To gain the dimensionless Planck length lp, we use the
dimeter of Milky Way Galaxy as the characteristic length,
say, dM � 105 (light year) �9 � 1020 (m). Obviously,
lp/dM � 1.8 � 10�56 is a rather small dimensionless number.
As mentioned above, two (dimensionless) positions shorter
than 10�56 do not make physical senses. Thus, it is reason-
able to assume the existence of the inherent uncertainty of
the dimensionless position and velocity of a star in the nor-
mal distribution with zero mean and the micro-level stan-
dard deviation 10�60. Strictly speaking, such kind of micro-
level inherent physical uncertainty should be added to the
observed values (x0,y0,u0,v0) of the initial conditions, espe-
cially for chaotic dynamic systems whose solutions are
rather sensitive to initial conditions.

Therefore, strictly speaking, the initial condition should
be expressed as follows

xð0Þ ¼ x0 þ ~x0; yð0Þ ¼ y0 þ ~y0; _xð0Þ ¼ u0 þ ~u0; _yð0Þ
¼ v0 þ ~v0;

where x0, y0, u0, v0 are observed values of the initial posi-
tion and velocity of a star orbiting in a plane about the
galactic center, and ~x0; ~y0; ~u0; ~v0 are the corresponding mi-
cro-level inherent uncertain ones, respectively. Assume
that (x0,y0,u0,v0) is exactly given and the inherent uncer-
tain term ð~x0; ~y0; ~u0; ~v0Þ is in the normal distribution with
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zero mean and a micro-level deviation r = 10�60. The rea-
sons for the above assumptions are described above.

Compared to the scale of the initial data x0 = 14/25, the
deviation 10�60 is indeed rather small. However, by means
of the CNS approach with the 70th-order Taylor expansion
and the MP data in accuracy of 140-digit precision, the
propagation of such kind of micro-level uncertainty can
be accurately studied, because the corresponding trunca-
tion error (in the level of 10�100) and round-off error (in
the level of 10�140) of the CNS approach is much smaller
than the micro-level uncertainty (in the level of 10�60),
as verified in Section 2.

4. Statistic property of chaos

Without loss of generality, let us consider the case of
the observed values

x0 ¼
14
25

; y0 ¼ 0; u0 ¼ 0; v0 ¼ 0

of the initial conditions, corresponding to a chaotic motion
[22]. The so-called observed values can be regarded as the
mean of measured data. Let

hxðtÞi ¼ 1
N

XN

i¼1

xiðtÞ; rxðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1

½xiðtÞ � hxðtÞi�2
vuut

denote the sample mean and unbiased estimate of stan-
dard deviation of x(t), respectively, where N = 104 is the
number of total samples, xi(t) is the ith sample given by
the CNS using Dt = 1/10, M = 70 with the MP data in accu-
racy of 140-digit precision, and a tiny random term
ð~x0; ~y0; ~u0; ~v0Þ with the micro-level deviation r = 10�60 in
the initial condition.

According to Section 2, all of these 104 trajectories given
by the CNS approach are reliable in the interval
t 2 [0,2000]. The standard deviations rx(t) and ry(t) of

x(t), y(t) are as shown in Figs. 1 and 2, respectively. Note
that there exists an interval 0 6 t 6 Td with Td � 1000, in
which rx(t) and ry(t) are in the level of 10�14 so that one
can accurately predict the position (x,y) of a star, even if
the corresponding motion is chaotic and the initial condi-
tion contains uncertainty. Similarly, the velocity of the star
can be also precisely predicted in 0 6 t 6 Td, as shown in
Fig. 3 for the standard deviation ru(t) of _xðtÞ. Thus, when
0 6 t 6 Td, the behavior of the chaotic system looks like
‘‘deterministic’’ and ‘‘predictable’’, even from the statistic
viewpoint. When t > Td, the standard deviations of the po-
sition and velocity begin to increase rapidly, and thus the
system becomes random obviously: the position (x,y) and
velocity ð _x; _yÞ of the star are strongly dependent upon their
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Fig. 1. The standard deviation rx of x in case of x0 = 14/25, y0 = 0, u0 = 0,
v0 = 0 and the uncertain term ð~x0; ~y0; ~u0; ~v0Þ in the normal distribution
with zero mean and a micro-level deviation r = 10�60.
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Fig. 2. The standard deviation ry of y in case of x0 = 14/25, y0 = 0, u 0 = 0,
v0 = 0 and the uncertain term ð~x0; ~y0; ~u0; ~v0Þ in the normal distribution
with zero mean and a micro-level deviation r = 10�60.
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Fig. 3. The standard deviation ru of _x in case of x0 = 14/25, y0 = 0, u0 = 0,
v0 = 0 and the uncertain term ð~x0; ~y0; ~u0; ~v0Þ in the normal distribution
with zero mean and a micro-level deviation r = 10�60.
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micro-level inherent physical uncertainty ð~x0; ~y0; ~u0; ~v0Þ of
the initial condition. In other words, due to the SDIC of
chaos, the unobservable micro-level inherent uncertainty
of the position and velocity of a star transfers into the mac-
roscopic randomness of the motion. This suggests that
chaos might be a bridge from the micro-level uncertainty
to macroscopic randomness! Therefore, the micro-level
inherent uncertainty of the position and velocity might
be an origin of the macroscopic randomness of motion of
stars in our universe. Possibly, this might provide us a
new, physical explanation and understanding for the SDIC
of chaos. For this reason, each ‘‘big bang’’ [18] will create
a completely different universe!

Besides, it is found that the standard deviations of the
position and velocity become almost stationary when
t > Ts, where Ts � 1300, as shown in Figs. 1–3. Thus, when
Td < t < Ts, the system is in the transition process from the
‘‘deterministic’’ behavior to the stationary randomness. It
is interesting that the stationary standard deviations of
x(t) and y(t) are about 1/3, and their stationary means hxi
and hyi are close to zero. It means that, due to SDIC of chaos
and the micro-level inherent uncertainty of position and
velocity, a star orbiting in a plane about the galactic center
could be almost everywhere in the galaxy at a given time
t > Ts.

Write the fluctuations x0(t) = x � hxi and y0(t) = y � hyi.
The stationary cumulative distribution functions (CDF) of
x0, y0 are almost independent of time, as shown in Figs. 4
and 5. Besides, the stationary CDF of the fluctuation x0 is
rather close to the normal distribution with zero mean
and the standard deviation of x0, as shown in Fig. 4. But,
the stationary CDF of the fluctuation y0 is obviously differ-
ent from the normal distribution, as shown in Fig. 5.

Similarly, we investigate the influence of the observed
values (x0,y0,u0,v0) and the standard deviation r of the
uncertain terms ð~x0; ~y0; ~u0; ~v0Þ in the initial condition by
means of the CNS approach. It is found that Td decreases

exponentially with respect to r. Besides, the stationary
means and standard deviations of x; y; _x; _y, and the CDFs
of x0 and y0, are independent of the observed values
(x0,y0,u0,v0). Thus, when t > Ts, all observed information
of the initial condition are lost completely. In other words,
when t > Ts, the asymmetry of time breaks down so that
the time has a one-way direction, i.e. the arrow of time.
So, statistically speaking, the Hénon–Heiles system has
two completely different dynamic behaviors before and
after Td: it looks like ‘‘deterministic’’ and ‘‘predictable’’
without time’s arrow when t 6 Td, but thereafter rapidly
becomes obviously random with a arrow of time.

Consoli et al. [2] suggested that the objective random-
ness ‘‘might introduce a weak, residual form of noise which
is intrinsic to natural phenomena and could be important
for the emergence of complexity at higher physical levels’’.
Our extremely accurate numerical simulations based on
the CNS approach support their viewpoint: the micro-level
uncertainty and the macroscopic randomness might have a
rather close relationship.

5. Conclusions and discussions

In this paper, an extremely accurate numerical algo-
rithm, namely the ‘‘clean numerical simulation’’ (CNS), is
proposed to accurately simulate the propagation of mi-
cro-level inherent physical uncertainty of chaotic dynamic
systems. The chaotic Hénon–Heiles system describing the
motion of a star orbiting in a plane about the galactic cen-
ter is used as an example to show the validity of the CNS
approach.

In the frame of the CNS approach, the truncation error is
estimated by (9), the round-off error is determined by the
digit-length of data, and the critical time Tc is explicitly
determined by (19) (for the chaotic Hénon–Heiles system).
So, given an arbitrary value of Tc, we can always find out
the required order M of Taylor expansion and the data in
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Fig. 4. The CDF of x0 , compared to the normal distribution (dashed line)
with zero mean and the standard deviation of x0 at t = 2000. Solid line:
CDF of x0 at t = 1500; symbols: CDF of x0 at t = 2000.
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Fig. 5. The CDF of y0 , compared to the normal distribution (dashed line)
with zero mean and the standard deviation of y0 at t = 2000. Solid line:
CDF of y0 at t = 1500; symbols: CDF of y0 at t = 2000.
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accuracy of 2M-digit precision so as to gain a reliable tra-
jectory of the chaotic Hénon-Heiles system in the finite
interval t 2 [0,Tc] by means of Dt = 1/10. In addition, the
CNS results in the interval t 2 [0,Tc] are verified very care-
fully by means of Taylor expansion at higher-order and
MP data in more accuracy, as shown in Section 2. As shown
in Section 2, all of the CNS results (for the same initial con-
dition) given by Dt = 1/10, M = 70 and data in accuracy of
140-digit precision are exactly the same as those given by
M = 100, 150, 200, 300, 500 and Dt = 1/20, 1/100, respec-
tively, so that they are indeed reliable, true trajectories of
the chaotic Hénon–Heiles system. Besides, as the order M
of Taylor expansion increases and the time-step Dt de-
creases, the truncation and round-off errors decrease
monotonously. For example, as illustrated in Tables 2–4,
the truncation error is in the level of 10�100 in case of
Dt = 1/10 and M = 70, and decreases to the level 10�1244

in case of Dt = 1/100 and M = 500. In addition, the round-
off error is simply in the level of 10�2M, where M denotes
the order of Taylor expansion. So, theoretically speaking,
one can control the truncation and round-off error to a
required level. In these meanings, the CNS approach is a
rigorous one.

The Hénon–Heiles system of (1) and (2) as a mathemat-
ical model has clear physical background: it has been
widely accepted and used by the scientific community to
describe the motion of a star orbiting in a plane about
the galactic center. The status of a star is dependent upon
its position and velocity. However, according to de Broglie
[4], the position of a star contains micro-level inherent
physical uncertainty, as discussed in Section 3. So, strictly
speaking, the Hénon–Heiles system of (1) and (2) is not
deterministic in essence. Due to the SDIC of chaos, such
kind of micro-level physical uncertainty transfers into
macroscopic randomness of motion, as illustrated in Sec-
tion 4 by means of the CNS approach. Therefore, the mi-
cro-level inherent physical uncertainty and macroscopic
randomness might have a close relationship: chaos might
be a bridge from the micro-level inherent physical uncer-
tainty to macroscopic randomness! This conclusion agrees
with the viewpoint of Consoli et al. [2] who suggested that
the objective randomness ‘‘might introduce a weak, resid-
ual form of noise which is intrinsic to natural phenomena
and could be important for the emergence of complexity
at higher physical levels’’.

The CNS approach provides us an extremely precise
numerical approach for chaotic dynamic systems in a given
finite interval t 2 [0,Tc]. According to (19), Tc ? +1 as
M ? +1. In other words, if the initial condition were ex-
act, then long-term prediction of chaos would be possible
in theory3: given an arbitrary value of Tc, we could gain
the reliable chaotic trajectory of the Hénon–Heiles system
in the finite interval 0 6 t 6 Tc by means of the Mth-order
Taylor expansion with data in accuracy of 2M-dight preci-
sion, as long as M > Tc/32 and Dt 6 1/10. Qualitatively, the
conclusion has general meanings and holds for other chaotic
models such as Lorenz equation. Besides, it is consistent

with Tucker’s elegant proof [25,26] that there indeed exists
an attractor of Lorenz equation. Thus, theoretically speaking,
there is no place for the randomness in a truly deterministic
system. However, most models related to physical problems
contain more or less physical uncertainty, and thus, strictly
speaking, are not deterministic. For such kind of physical
models with inherent uncertainty, the accurate long-term
prediction of trajectories of chaotic system has no physical
meanings, because their long-term trajectories are inherently
random that comes from the micro-level inherent physical
uncertainty, as illustrated in this article.

Traditionally, it is believed that the long-term predic-
tion of chaos is impossible, mainly due to the impossibility
of the perfect measurement of initial conditions with an
arbitrary degree of accuracy. This is the traditional expla-
nation to the SDIC of chaos. Here, we provide a new expla-
nation for the SDIC of chaos from the physical viewpoint:
initial conditions of some chaotic systems with clear phys-
ical meanings might contain micro-level inherent physical
uncertainty, which might propagate into macroscopic ran-
domness. Different from the traditional explanation of the
SDIC, which focuses on the measurement, the new explana-
tion emphasizes the inherent micro-level uncertainty and
its propagation with chaos. Besides, it should be empha-
sized that such micro-level inherent physical uncertainty
of chaos was completely inundated with the numerical
noises of the traditional numerical methods based on
low-order algorithms, and thus has never been studied in
details. This shows the validity and potential of the CNS
to precisely simulate complex physical phenomena with
the SDIC, such as weather prediction and turbulence.

Finally, for the easier understanding of the CNS, let us
consider the map

f ðxÞ ¼modð2x;1Þ ð24Þ

with the initial value x0 = p/4. It is well-known that this
map has the sensitivity dependence on initial condition,
i.e. SDIC. The results of the nth mapping, i.e. xn = f(xn�1)
with x0 = p/4, are expressed by both of the decimal and
binary systems in Table 6. In binary system, the mapping
xn corresponds to such a kind of left shift: shifting x0 left
to the position of its 2nd digit ‘‘1’’ gives x1, and to the posi-
tion of its 3rd digit ‘‘1’’ gives x2, and so on, as shown in Ta-
ble 6. In general, xn (in binary system) corresponds to the
left shift of x0 (in binary system) to its position of the
(n + 1) th digit ‘‘1’’. Since p/4 is exactly known in binary
system, its position of the nth digit ‘‘1’’ is deterministic, de-
noted by P2(n). So, in binary system, xn is exactly the left
shift of x0 to its P2(n + 1)th digit ‘‘1’’. So, mathematically

Table 6
Mapping of f(x) = mod (2x,1) with x0 = p/4, expressed in decimal and binary
systems.

n xn in decimal system xn in binary system

0 0.785398163397448. . . 110010010000111111011010l. . .

1 0.570796326794896 . . . 10010010000111111011010 . . .

2 0.141592653589793 . . . 10010000111111011010 . . .

3 0.283185307179586 . . . 10000111111011010 . . .

..

. ..
. ..

.

3 Unfortunately, the required CPU time increases exponentially as M
increases, so that it is practically impossible to give reliable, true trajectories
of chaos in a very large interval.
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speaking, this mapping is deterministic and xn is exactly
known. However, in practice, one had to take x0 = p/4 in
a finite accuracy, which leads to uncertainty. Assume that
x0 is in accuracy of N0 binary digits. Then, x1, x2, x3 has
N0 � 1, N0 � 4, N0 � 7 significance binary digits, respec-
tively, as shown in Table 6. In general, xn is in the accuracy
of N0 � P2(n + 1) binary digit precision. Obviously, when
P2(n + 1) > N0, the mapping xn losses its accuracy at all.
However, even at one million times of mapping, i.e.
n = 106, we can gain the accurate enough result x1000000 in
the accuracy of one million of binary digit precision, as
long as we take the initial value x0 = p/4 in the accuracy
of 106 + P2(106 + 1) binary digit precision! This simple
example illustrates that we do can gain reliable results
for dynamic systems with SDIC in a finite times of mapping
or a finite interval, as long as initial conditions are accurate
enough. This also explains why the CNS is based on rather
accurate data, using the computer algebra system Math-
ematica or the multiple precision library.

However, a chaotic dynamic system has no such kind of
elegant property of mod (2x,1) mentioned above, since its
exact solution is unknown in general. Thus, the above ap-
proach based on the left shift has no general meanings. As-
sume that one knows the SDIC of the mapping f(x) = mod
(2x,1), but has no ideas about its left-shift property in
the corresponding binary system. How to gain reliable se-
quence xn = f(xn�1) by means of x0 = p/4? A general,
straight-forward way is to compare two sequences given
by x0 = p/4 in different accuracy of N-digit precision (in
decimal system), where N = 15, 20, 25, 30 and 1000,
respectively, as shown in Table 7. For example, by compar-
ing the two sequences of xn given by x0 in accuracy of 15
and 20-digit precision, one is sure due to the SDIC that
the sequence xn given by x0 in accuracy of 15-digit preci-
sion is reliable at n 6 15 in accuracy of 8 significance digits.
Similarly, using x0 in accuracy of 20 and 25-digit preci-
sions, one gains reliable xn at n 6 30 and n 6 40 with 8 sig-
nificance digits, respectively. Note that the sequence xn

given by x0 in accuracy of 25-digit precision agrees well
with that by x0 in accuracy of 30-digit precision for a finite
number of mappings xn, where 0 6 n 6 40. Thus, one has
many reasons to believe that the finite sequence x0, x1,
. . ., x40 given by means of x0 in accuracy of 25-digit preci-
sion is reliable. This is indeed true, because it completely
agrees with the ‘‘exact’’ sequence given by x0 in accuracy
of 1000-digit precision, as shown in Table 7. The key point
is that, to gain reliable sequence x0,x1, . . ., x40 with the finite

number of mappings, we need use x0 in accuracy of only
25-digit precision: it is unnecessary to use x0 in higher
accuracy. Similarly, using x0 in accuracy of 40-digit preci-
sion, one can gain reliable sequence

x0; x1; x2; � � � ; x100

in accuracy of 8 significance digits. Furthermore, using x0

in accuracy of 60-digit precision, one can gain reliable
sequence

x0; x1; x2; . . . ; x166

in accuracy of 8-digit precision as well. And so on. Thus, we
can gain reliable xn of finite but many enough mappings by
using accurate enough x0. In other words, the reliability and
precision of the finite sequence

x0; x1; x2; . . . ; xn

given by the mapping f(x) = mod (2x,1) with SDIC is under
control. It is true that, using x0 in 60-digit precision, x100000

is incorrect and thus has no meaning. However, the key
point is that the corresponding sequence

x0; x1; x2; . . . ; x166

of a finite number of mappings is reliable in accuracy of 8-
digit precision, which might be enough for one’s purpose.
In essence, we seek for a kind of relative reliability and pre-
dictability of chaotic dynamic systems, although very long-
term accurate prediction of any a chaotic dynamic system
is absolutely impossible in theory. It is true that, using x0 in
accuracy of any a given precision, there absolutely exists
such a large enough n that xn totally losses its accuracy.
However, we can guarantee the reliability and predictabil-
ity of a given finite sequence (such as x0,x1,x2, . . . ,x166) by
using x0 in a reasonable accuracy (such as 60-digit preci-
sion). It should be emphasized that such kind of compari-
son approach is valid for any chaotic dynamic systems.
So, it has general meanings and thus is practical. Note that
the same comparison approach is used in the CNS de-
scribed in Section 2 and Section 3. This example clearly ex-
plains why the CNS based on such kind of comparison is
indeed reasonable and valid.

It is important to provide a practical numerical ap-
proach to gain reliable chaotic solutions of dynamic sys-
tems in a long enough interval of time. Using CNS with
400-order Taylor expansion, data in accuracy of 800-digit
precisions and Dt = 10�2, Liao [12] gained, for the first
time, a reliable chaotic solution of Lorenz equation in a

Table 7
xn given by the mapping f(x) = mod (2x,1) with the initial value x0 = p/4 in different accuracy of N decimal digit precision.

n N = 15 N = 20 N = 25 N = 30 N = 1000

5 0.1327412287 0.1327412287 0.1327412287 0.1327412287 0.1327412287
10 0.2477193189 0.2477193189 0.2477193189 0.2477193189 0.2477193189
15 0.9270182076 0.9270182075 0.9270182075 0.9270182075 0.9270182075
20 0.664582643 0.6645826427 0.6645826427 0.6645826427 0.6645826427
25 0.2666446 0.2666445682 0.2666445682 0.2666445682 0.2666445682
30 0.532626 0.5326261849 0.5326261849 0.5326261849 0.5326261849
35 0.0440 0.044037917 0.0440379171 0.0440379171 0.0440379171
40 0.409 0.40921335 0.4092133503 0.4092133503 0.4092133503
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rather long time interval 0 6 t 6 1000, whose correction is
confirmed by Wang et al. [27]. As mentioned by Wang [28],
in order to gain reliable chaotic solution of Lorenz equation
in the interval 0 6 t 6 1000 by means of the 4th-order
Runge–Kutta method, one had to use multiple precision
data in 10000-digit precision and a rather small time-step
Dt = 10�170, which however needs about 3.1 � 10160 years
by today’s high-performance computer! Therefore, the
low-order Taylor expansion approaches are not practical
to gain reliable chaotic solution of Lorenz equation in such
a long time interval. There exist some ‘‘rigorous’’ simula-
tions [26] assuring that the real orbits of chaotic system
are ‘‘enclosed’’ in a computed region of space, such as
[x(t) � d,x(t) + d], where d should be a small constant: re-
sults with large d is useless in practice, even though it is
obtained by ‘‘rigorous’’ methods. Due to SDIC, it is obvious
that one had to use rather small d to gain such a rigorous
chaotic solution of Lorenz equation in 0 6 t 6 1000 by
means of the enclosing approach: possibly d might be in
the level of 10�480, since the corresponding initial condi-
tion must be accurate in 480 digit precision, as pointed
out by Liao [12]. However, to the best of author’s knowl-
edge, it is still an open question whether or not the ‘‘rigor-
ous’’ method based on enclosing [26] can give such a
reliable, accurate enough chaotic solution of Lorenz equa-
tion in the interval 0 6 t 6 1000 by means of a reasonable
CPU time. Besides, to the best of author’s knowledge, it is
also an open question whether or not the enclosing ap-
proach is practical for physical problems like those consid-
ered in this article: note that the CNS is successfully used
to gain 10000 samples of reliable chaotic solutions given
by different initial conditions with 10�60-level uncertainty.
So, compared to other approaches, the CNS is not only reli-
able but also practical.

Indeed, the propagation of round-off and truncation er-
rors of a chaotic dynamic system is rather complicated and
thus is unknown in general cases. As pointed out by Parker
and Chua [17], a ‘‘practical’’ way of judging the accuracy of
numerical results of a non-linear dynamic system is to use
at least two (or more) ‘‘different’’ routines to integrate the
‘‘same’’ system. This is mainly because, due to the SDIC of
chaotic dynamics systems, departure of two chaotic simu-
lations indicates the appearance of large enough trunca-
tion and round-off errors. In practice, the comparison
approach provides us a time interval 0 6 t 6 Tc, in which
the same results should be reliable, mainly due to SDIC
of chaos. Certainly, such kind of critical time Tc must be
carefully checked by as many different approaches as
possible, as shown in Section 2.2. In fact, such kind of
comparison approach is widely accepted by scientific
community [17,24,27,28]. And the CNS is based on such
kind of strategy. Using a metaphor, it is like measuring
the height of a man: the better the equipment, the more
accurate the result, although we can not provide an ‘‘exact’’
value of the height. Although it is difficult to measure the
height of a man in accuracy of 10�10 meter, it is rather easy
to ensure that whether a man is higher than 1.85 m or not,
as long as all measures given by all equipments give us the
same answer to this question: such kind of precision is rel-
atively rough but enough in many cases of everyday life.
Similarly, the CNS seeks for reliable, accurate enough

simulations of chaotic dynamic systems in a finite time-
interval.

In summary, the CNS provides us a practical way to gain
reliable, accurate enough solutions of chaotic dynamic sys-
tems with a high enough precision in a finite but long en-
ough time interval.
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