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Calculation of added mass coefficients of 3D complicated underwater
bodies by FMBEM
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a b s t r a c t

In this paper, the fast multiple boundary element method (FMBEM) is applied to calculate
the added mass coefficients of complicated three dimensional (3D) underwater bodies.
First, the accuracy and efficiency of the FMBEM for 3D Laplace’s equation are investigated
by using some simple 3D bodies with known added mass coefficients, such as sphere and
spheroids. Then, as an example, the added mass coefficients of a SUBOFF submarine are cal-
culated by the FMBEM. It is found that the FMBEM is computationally much more efficient
than the traditional BEM. Therefore, the FMBEM provides us an effective numerical method
to predict added mass coefficients of complicated underwater bodies.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

In ocean engineering, the prediction of the added forces and moments for surface ships and underwater vehicles is very
important. The added mass and the added moment of inertia can be viewed as the mass and the moment of inertia of the
fluid moving with the body while the body is in motion of acceleration, respectively. In potential flow, if /i represents the
velocity potential of the steady flow due to unit motion of a body in the i-direction then the added mass tensor is defined as:

mji ¼ �q
Z Z

S
/i

@/j

@n
dS i; j ¼ 1;2; . . . ;6 ð1Þ

where q is the fluid density, n is the outward normal to the surface, S, which represents the body surface. mji is the added
mass (or moment of inertia) in the j-direction corresponding to a motion in the i-direction. The indices 1 through 3 corre-
spond to linear motions in x, y and z directions (surge, sway and heave), and the indices 4 through 6 correspond to rotations
about the x, y and z-axes (roll, pitch, and yaw), respectively. The added mass coefficients are symmetric, i.e., mij = mji, there-
fore in general there are 21 unknown added mass coefficients. If the body is symmetrical with respect to one or more axes of
symmetry, this number is reduced substantially. For details, please refer to Newman [1] or Kochin et al. [2].

The boundary element method has been widely applied to obtain the added mass coefficients for underwater bodies [3,4].
In the traditional BEM, a standard linear system of equations is formed, and coefficient matrices are fully populated. That is,
the traditional BEM requires O(N2) operations to obtain the coefficients and another O(N3) operations to solve the linear sys-
tem using direct solvers, where N is the number of equations of the linear system. This is a serious limitation which leads to
huge exhaustion of the memory of a computer and becomes an obstacle for the applications of the traditional BEM to large-
scale problems.

The fast multipole method (FMM) was pioneered by Roklin [5] as a fast solution method for integral equations for 2D
Laplace’s equation in the mid of 1980s. And then Greengard [6] developed FMM for the pairwise force calculation in mul-
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ti-body problems with columbic potential. FMM has been nominated as one of the top 10 algorithms of the 20th century
along with Fast Fourier Transform (FFT), QR algorithm, etc., in scientific computing. With the FMM and iterative solver, a
new method based on the traditional BEM [7–10] was developed, which is named fast multipole boundary element method
(FMBEM). Using the FMBEM, the solution time can be reduced to O(N) and the memory requirement can also be reduced to
O(N). The basic concepts and primary procedures in the FMBEM have been described in detail by Liu and Nishimura [11].

In this paper, the basic ideas of the FMBEM for 3D Laplace’s equation are described at first. Then, the uniform potential
flows past a sphere or spheroid are used as simple examples to investigate the accuracy and efficiency of the FMBEM. Finally,
the added mass coefficients of the DARPA SUBOFF submarine [12] are calculated by means of the FMBEM. It is found that the
FMBEM is an effective numerical method to predict the added mass of underwater bodies with complex geometry.

2. FMBEM for 3D Laplace’s equation

Consider the 3D Laplace’s equation governing the potential problems

r2/ðxÞ ¼ 0 in X; ð2Þ

subject to the boundary conditions

/ðxÞ ¼ �/ðxÞ on C1; ð3Þ

and

qðxÞ ¼ @/ðxÞ
@n

¼ �qðxÞ on C2; ð4Þ

where / is the potential field in domain X, C = C1 [C2 the boundary of X, n is the outward normal to C, and the barred
quantities indicate given values on the boundary.

Using the traditional BEM, one can write the solution of Laplace’s equation in the form

/ðxÞ ¼
Z

C
Gð x!; y!ÞqðyÞ � @Gð x!; y!Þ

@ny
/ðyÞ

 !
dCðyÞ; x 2 X; ð5Þ

where G is the fundamental solution of the 3D Laplace’s equation given by

Gð x!; y!Þ ¼ 1
4pj x!� y!j

; ð6Þ

in which x! is a vector from the coordinate origin o to the collocation point x.
Letting x ? C, we obtain the following boundary integral equation:

CðxÞ/ðxÞ ¼
Z

C
Gð x!; y!ÞqðyÞ � @Gð x!; y!Þ

@ny
/ðyÞ

 !
dCðyÞ; 8x 2 C; ð7Þ

and the coefficient

CðxÞ ¼ �
Z

C

@Gð x!; y!Þ
@ny

dCðyÞ: ð8Þ

If the boundary C is smooth at the collocation point x, we have C(x) = 1/2.
In the traditional BEM, we can use elements to subdivide the boundary and obtain a linear system Ak = b, where A is the

coefficient matrix, k the unknown vector and b the known right-hand side vector. Please refer to Brebbia’s book [13] for more
details about the traditional BEM.

2.1. Basic formulae

The fast multipole method is employed to accelerate the solutions of boundary integral equations. We first describe the
basic formulae, such as multipole moment, moment-to-moment (M2M) translation, local expansion, moment-to-local
expansion (M2L) translation and local expansion-to-local expansion (L2L) translation.

Expand the fundamental solution Gð x!; y!Þ into a series of products of functions of x and those of y (Fig. 1). Note that the
following expansion holds true:

1
4pj x!� y!j

¼ 1
4p

X1
n¼0

Xn

m¼�n

Sn;mðycx�!ÞRn;mðycy�!Þ; jycx�!j > jycy�!j; ð9Þ

where Rn,m and Sn,m are the solid harmonics defined by
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Rn;mðycx�!Þ ¼ 1
ðnþmÞ! Pm

n ðcoshÞeim/rn; ð10Þ

Sn;mðycx�!Þ ¼ ðn�mÞ!Pm
n ðcoshÞeim/ 1

rnþ1 : ð11Þ

(r,h,/) are the spherical coordinates of the vector ycx�!; Pm
n is the associated Legendre function and the superposed bar indi-

cates the complex conjugate. The functions Rn,m and Sn,m satisfy the relations

Rn;mð yx�!Þ ¼Xn

n0¼0

Xn0

m0¼�n0
Rn0 ;m0 ðyyc

�!ÞRn�n0 ;m�m0 ðycx�!Þ; ð12Þ

and

Sn;mð yx�!Þ ¼X1
n0¼0

Xn0

m0¼�n0
Rn0 ;m0 ðycy�!ÞSnþn0 ;mþm0 ðycx�!Þ; jycy�!j < jycx�!j: ð13Þ

Therefore, for a part of C denoted by C0 and a point x far away from C0, the multipole expansion can be given byZ
C0

Gð x!; y!ÞqðyÞ � @Gð x!; y!Þ
@ny

/ðyÞ
 !

dCðyÞ ¼
X1
n¼0

Xn

m¼�n

Sn;mðycx�!ÞMn;mðycÞ; ð14Þ

where Mn,m(yc) stands for the multipole moment centered at yc, given by

Mn;mðycÞ ¼
Z

C0

Rn;mðycy�!ÞqðyÞ � @Rn;mðycy�!Þ
@ny

/ðyÞ
 !

dCðyÞ: ð15Þ

As the origin is shifted from yc to y0c, there is the following M2M translation formula:

Mn0 ;m0 ðy0cÞ ¼
Xn0

n¼0

Xn

m¼�n

Rn;mðy0cyc

��!
ÞMm0�m

n0�n ðycÞ: ð16Þ

The local expansion is given byZ
C0

Gð x!; y!ÞqðyÞ � @Gð x!; y!Þ
@ny

/ðyÞ
 !

dCðyÞ ¼
X1
n¼0

Xn

m¼�n

Rn;mðxcx�!ÞLn;mðxcÞ ð17Þ

for points x in the neighborhood of a certain point xc, where the coefficient of the local expansion Ln,m is given by the fol-
lowing M2L translation formula:

Ln;mðxcÞ ¼
X1
n0¼0

Xn0

m0¼�n0
ð�1ÞnSn0þn;m0þmðycxc

��!ÞMn0 ;m0 ðycÞ: ð18Þ

The L2L translation formula takes the following form:

Γ0
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x
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Fig. 1. Boundary and related points for fast multipole expansions.
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Ln;mðx0cÞ ¼
X1
n0¼n

Xn0

m0¼�n0
Rn0�n;m0�mðxcx0c

��!
ÞLn0 ;m0 ðxcÞ ð19Þ

as one shifts the center of expansion from xc to x0c .

2.2. FMBEM algorithm

The main idea of the FMBEM is to translate the traditional element-to-element interactions into cell-to-cell interactions.
The details of the FMBEM algorithm have been clearly described by Nishimura [15] and Liu et al. [11]. Only the main steps of
the FMM algorithms for BEM are described briefly as follows:

Step 1. Discretize the boundary S into N elements, and discretize / in an ordinary manner as the traditional BEM;
Step 2. Obtain a hierarchical tree structures of elements. For a 3D problem, first, take a cube which contains the boundary

S and call it a cell of level 0. And then divide a cell (a parent cell) of level l(l P 0) into eight sub cubes whose size is
half of that of the parent cell and call any of them a cell (a child cell) of level l + 1 if some boundary elements
belong to this sub cube. One terminates the subdivision if a cell contains less than a given number (denoted
by M) of boundary elements and this childless cell is called a leaf. A oct-tree structure of cells containing all
boundary elements is formed in this step;

Step 3. Compute the moment in each cell starting from the leaves and tracing the tree structure of cells upward. In this
step, Eq. (15) is used for the computation of the multipole moments and Eq. (16) for M2M translations;

Step 4. Compute the local expansion to the leaf cells starting from the level 2 cells and tracing the tree structure of cells
downward. In this step, Eq. (18) is used for M2L translations and Eq. (19) for L2L translations;

Step 5. Obtain two integral contributions to each element. For the evaluation of contributions with near elements, the
traditional BEM is used directly. And contributions from the far elements are evaluated with the help of the local
expansion, using Eq. (17);

Step 6. Use the iterative solver GMRES to update the unknown vector in Ak = b, and continue at Step 3 for the matrix and
unknown vector multiplication until the solution converges within a given tolerance.

2.3. A numerical example

In this paper, all the boundary surfaces are discretized into constant triangular panels. For the FMBEM, the tolerance for
the iterative solver GMRES was set to 10�6, the numbers of terms for both moments and local expansions to 10 and the max-
imum number of elements in a leaf to 100. All the computations were done on a compute node of a cluster with an Intel(R)
Xeon(TM) 3.0 GHz CPU, 4.0 GB RAM. The 25 points Gaussian quadrature for triangles [14] was applied, which permits all the
integrations to achieve a reasonable accuracy.

First of all, we consider a simple potential problem (Fig. 2), i.e. a flow of unit velocity past a rigid unit sphere in an unbounded
domain. In this problem, the analytical solution is available. The diffraction potential /d satisfies the 3D Laplace’s equation. Then
solve this problem by FMBEM and the results are compared with the exact solution. The RMS error is defined as

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

½ð/dÞexact � ð/dÞnum�
2

vuut ; ð20Þ

where N is the total number of the boundary elements.
As shown in Table 1 and Fig. 3, the numerical solutions converge to the exact solution as N increases. The comparison of

CPU time used by FMBEM and the traditional BEM is shown in Fig. 4. The traditional BEM uses a direct solver (Gauss

Fig. 2. Uniform flow past an unit sphere.
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elimination) for solving the linear system. As N, the total number of elements, is over 1000, the CPU time used by FMBEM is
less than that used by the traditional BEM. As shown in Table 2, for the model with 11,652 elements, the CPU time used by
FMBEM is only 130 s, while the traditional BEM used about 75,360 s. As N further increases, the memory of the computer is
not enough for running the traditional BEM code, but in the case of N = 102,200, the CPU time used by FMBEM is less than
1080 s (18 min). As Liu etc. [11] pointed out that both the computational cost and the memory requirement can be reduced
from O(N2) to O(N) by FMBEM. It means that FMBEM is quite efficient and can be applied to large-scale problems.

3. Added mass calculations

In this section, the FMBEM is applied to calculate the added masses and the moments of inertia of three-dimensional
bodies. First, we consider some bodies with classical shapes, such as the unit sphere and the spheroids with different

Table 1
RMS error versus element number.

N 184 722 1486 2896 5610 11,652 25,084 50,390 102,200

ERMS (10�4) 34.17 9.32 4.79 2.42 1.24 0.61 0.28 0.14 0.07
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Fig. 3. RMS error versus element number.

102 103 104 105
10-1

100

101

102

103

104

105

FMBEM

traditional
BEM

N

t

Fig. 4. Comparison of CPU time used by FMBEM and the traditional BEM.
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slenderness ratios (a/b, where a and b are semi-axes of spheroid). At the end, the added mass coefficients of the DARPA SUB-
OFF submarine are calculated.

3.1. Sphere and spheroids

For a sphere, due to the symmetry with respect to all three centroidal axes, all rotational added masses are zero, and the
analytical solutions in the linear motions are: m11 = m22 = m33 = 2pqa3/3, where a is the radius of the sphere. The non-dimen-
sional added mass coefficients are defined as:

m011 ¼ m022 ¼ m033 ¼
m11

qa3 : ð21Þ

As shown in Table 3, the added mass coefficient for the unit sphere calculated by the FMBEM agrees very well with the exact
solution.

For spheroids, the rotational added masses m55 and m66 are non-zero, and there exists m55 = m66. The exact solution for-
mulas for the added masses are supplied by Sahin etc. [3]. The non-dimensional added mass coefficients are defined as:

lx ¼
m11

4
3 pqab2 ; ly ¼ lz ¼

m22

4
3 pqab2 ; lyy ¼ lzz ¼

m55

4
15 pqab2ða2 þ b2Þ

: ð22Þ

As shown in Tables 4–6, all the added mass coefficients calculated by the FMBEM converge to the exact solutions as the
mesh size decreases. Here, the mesh size is the length of the equivalent sides of the triangular elements.

Thus, by refining the mesh of the boundary, we can ensure the accuracy of the FMBEM.

Table 3
Non-dimensional added mass for the unit sphere.

N 722 2896 5890 18,850 Exact solution

m011 2.0749 2.0897 2.0921 2.0937 2.0944
Relative error (%) 0.93 0.22 0.11 0.03

Table 2
Comparison of CPU time (s) used by FMBEM and traditional BEM.

N 184 722 1486 2896 5610 11,652 25,084 50,390 102,200

FMBEM 7.38 9.95 15.79 35.90 65.63 130.18 368.44 520.09 1079.04
BEM 0.09 3.85 36.84 338.68 4047.26 75359.57 – – –

Table 4
Non-dimensional added mass lx for spheroids with semi-axe b = 0.5 m.

Mesh size (m) a/b = 5 a/b = 10 a/b = 15
lx102 lx102 lx102

0.1 5.8835 2.0620 1.0818
0.05 5.9052 2.0684 1.0854
0.025 5.9105 2.0701 1.0862

Exact solution 5.9121 2.0706 1.0865

Table 5
Non-dimensional added mass ly for spheroids with semi-axe b = 0.5 m.

Mesh size (m) a/b = 5 a/b = 10 a/b = 15
ly ly ly

0.1 0.8911 0.9577 0.9764
0.05 0.8935 0.9596 0.9781
0.025 0.8941 0.9601 0.9786

Exact solution 0.8943 0.9602 0.9787
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3.2. SUBOFF submarine body

The overall length of the SUBOFF submarine is 14.2917 ft. Note that the unit of length is feet, and we can compare the
numerical results with the available experimental results. Two models of the SUBOFF submarines are shown in Fig. 5.
One model is the bare hull and the other consists of the hull, sail configuration and stern appendages. The latter model is
quite complex and the mesh strategies are shown in Figs. 6 and 7. The total number of the triangle elements is up to
27,972, but the CPU time for running the FMBEM code to obtain one added mass coefficient is only about 1660 s, less than
half an hour.

X

Y

Z

X

Y

Z

Fig. 5. The sketches of DARPA SUBOFF submarine.

Fig. 6. The mesh of DARPA SUBOFF submarine.

Table 6
Non-dimensional added mass lyy for spheroids with semi-axe b = 0.5 m.

Mesh size (m) a/b = 5 a/b = 10 a/b = 15
lyy lyy lyy

0.1 0.6951 0.8792 0.9331
0.05 0.6986 0.8824 0.9360
0.025 0.6995 0.8832 0.9368

Exact solution 0.6999 0.8835 0.9371

Fig. 7. The meshes of sail configuration and stern appendages.
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Only the lateral motion (sway) added mass coefficients are compared with the experimental results in Table 7. The
FMBEM results are close to the experimental results, which demonstrates that the results obtained by the FMBEM is reliable.
Clearly, for a refine mesh, our numerical solutions will be accurate enough.

The other added masses coefficients are shown in Table 8. For the bare hull case, due to the symmetry, we have m44 = 0,
m22 = m33, and m55 = m66. As shown in Table 8, for the bare hull, the difference between m22 and m33 is quite small, and the
difference between m55 and m66 is also quite small relative to their values. Note that, the value of m44 equals to 7.7E�04,
which is almost zero and indicates the accuracy of the FMBEM.

Due to complex configuration of the hull and sails model, there are some interesting results. m33 does not equal to m22,
and m55 does not equal to m66. Since the sail configuration is relatively small to the overall length, m33 and m55 are just a little
greater than m22 and m66, respectively. However, the sail configuration is in the same scale as the diameter of the SUBOFF
submarine’s cross section, so the existence of the sail configuration makes a great impact on the value of m44. As shown in
Table 8, the value of m44 is large rather than equal to zero.

4. Conclusions

It is costly to solve complicated 3D potential flows by means of the traditional BEM. This seriously restricts the applica-
tions of the traditional BEM to the 3D large-scale problems in ocean engineering. In this paper, the fast multipole boundary
element method (FMBEM) is successfully applied to calculate the added mass coefficients of 3D underwater bodies with
complicated shapes. It is found that the FMBEM is computationally much more efficient than the traditional BEM so that
the number of boundary elements can be up to several millions. Thus, the FMBEM is suitable to solve 3D complicated
large-scale potential problems in ocean engineering.
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Added mass coefficients for the SUBOFF submarine.
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