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SUMMARY

In this paper, we use the laminar viscous flow in a lid-driven cavity as an example to describe and verify
a numerical scheme for non-linear partial differential equations. The proposed scheme combines a new
analytical method for strongly non-linear problems, namely the homotopy analysis method, with the
multigrid techniques. A family of formulas at different orders is given. At the lowest order, the current
approach is the same as the traditional multigrid methods. However, our high-order scheme needs a
fewer number of iterations and less CPU time than the classical ones. Copyright © 2001 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The multigrid method [1–3,20] is one of the most efficient numerical techniques for solving
partial differential equations (PDE) and is widely applied in computational fluid dynamics
(CFD) [4–10]. Multigrid techniques were first developed to solve linear PDEs. For linear
PDEs, multigrid techniques are very efficient and can save a large amount of CPU time [1–3].
However, for non-linear PDEs such as Navier–Stokes equations in CFD, there often exist two
kinds of coupled iterations, namely the inner and outer iterations. Owing to the non-linearity
of viscous flow problems, the interaction between the inner and outer iterations is strong in
general and therefore weakens the numerical efficiency of multigrid method.

In this paper, we propose a kind of non-linear multigrid technique by means of applying a
new analytic technique for strongly non-linear problems, namely the homotopy analysis
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S.-J. LIAO AND F. MASHAYEK108

method (HAM) [11,12]. The HAM is proposed by one of the authors to overcome the
restrictions and limitations of widely applied perturbation techniques. This method does not
depend upon small parameters and provides us with great freedom to select proper base
functions to approximate solutions of a non-linear problem. Liao [13] successfully applied the
HAM to give, for the first time (to our knowledge), uniformly valid analytic solutions of some
non-linear problems in fluid mechanics. Besides, the HAM has been successfully applied to
develop some new numerical techniques, such as the general boundary element method [14–16]
and so on [17]. Liao [17] verified that accurate enough numerical results of non-linear PDEs
can be obtained even by means of no iterations. All of these verify the validity of the HAM
in solving non-linear PDEs, and thus encourage us to further apply it to other non-linear
problems in CFD.

As mentioned by Liao [12,13], the essence of the HAM is to transfer a non-linear problem
into an infinite number of linear sub-problems and then to approximate the original non-linear
problem by the solutions of the first several linear sub-problems. All of these linear sub-
problems are governed by the same linear operator and therefore can be easily solved by
numerical techniques, as mentioned by Liao [14–17]. Obviously, one can use multigrid
techniques to solve these linear sub-problems so as to increase the numerical efficiency. In this
paper, we combine the HAM with multigrid techniques to develop a new multigrid scheme for
non-linear problems. We consider here the steady state laminar viscous flow in a driven cavity,
governed by the dimensionless Navier–Stokes equations written in the vorticity � and
streamfunction � as follows:

�2�=Re
���

�y
��

�x
−

��

�x
��

�y
�

(1.1)

�2�+�=0 (1.2)

and the boundary conditions

�=0,
��

�y
=1, y=1 (1.3)

�=0,
��

�y
=0, y=0 (1.4)

�=0,
��

�x
=0, x=0, x=1 (1.5)

where Re is the Reynolds number. The spatial domain geometry and boundary conditions are
as shown in Figure 1. This is a classical problem in CFD for testing new numerical techniques
and therefore is a good starting point for us to develop and verify our multigrid scheme for
non-linear PDEs.
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NON-LINEAR MULTIGRID TECHNIQUE 109

2. THE BASIC IDEAS

Let L(�, �) denote a two-dimensional linear partial differential operator, �0(x, y) and �0(x, y)
the given (selected) initial guess solutions of the vorticity and streamfunction, respectively. Let
��, ��, �b be non-zero parameters and p� [0, 1] be a real number. We construct a set of PDEs

(1−p){L [W(x, y, p), �(x, y, p)]−L [�0(x, y), �0(x, y)]}

=p��

�
�2W(x, y, p)−Re

���(x, y, p)
�y

�W(x, y, p)
�x

−
��(x, y, p)

�x
�W(x, y, p)

�y
n�

(2.1)

(1−p)[�2�(x, y, p)+W(x, y, p)− (�2�0+�0)]=p�� [�2�(x, y, p)+W(x, y, p)] (2.2)

and the boundary conditions

(1−p)[�(x, y, p)−�0(x, y)]=�bp�(x, y, p), when x=0 or x=1 or y=0 or y=1
(2.3)

(1−p)
���(x, y, p)

�y
−

��0(x, y)
�y

n
=�bp

���(x, y, p)
�y

−1
n

, when y=1 (2.4)

(1−p)
���(x, y, p)

�y
−

��0(x, y)
�y

n
=�bp

��(x, y, p)
�y

, when y=0 (2.5)

(1−p)
���(x, y, p)

�x
−

��0(x, y)
�x

n
=�bp

��(x, y, p)
�x

, when x=0 or x=1 (2.6)

Figure 1. Spatial domain geometry and boundary conditions.
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Assume that the auxiliary linear operator L, the auxiliary non-zero parameters ��, ��, �b and
the initial guess solutions �0(x, y), �0(x, y) are properly selected so that Equations (2.1)– (2.6)
have solutions W(x, y, p), �(x, y, p) for p� [0, 1]. Then, when p=0, we have from Equations
(2.1)– (2.6) that

W(x, y, 0)=�0(x, y), �(x, y, 0)=�0(x, y) (2.7)

When p=1, Equations (2.1)– (2.6) are exactly the same as Equations (1.1)– (1.5). Thus, it
holds

W(x, y, 1)=�(x, y), �(x, y, 1)=�(x, y) (2.8)

Therefore, as p increases from zero to one, W(x, y, p) varies from the initial guess solution
�0(x, y) to the solution �(x, y), so does �(x, y, p) from �0(x, y) to �(x, y). This kind of
variation is called deformation in topology, so Equations (2.1)– (2.6) are named zero-order
deformation equations. If the deformations W(x, y, p) and �(x, y, p) are smooth enough so
that they have the following derivatives at any order:

�0
[k](x, y)=

�kW(x, y, p)
�pk

�
p=0

, k=1, 2, 3 . . . (2.9)

�0
[k](x, y)=

�k�(x, y, p)
�pk

�
p=0

, k=1, 2, 3 . . . (2.10)

we have via Equation (2.7) the corresponding Maclaurin series

W(x, y, p)=�0(x, y)+ �
+�

k=1

�k(x, y)pk (2.11)

�(x, y, p)=�0(x, y)+ �
+�

k=1

�k(x, y) pk (2.12)

where

�k(x, y)=
1
k !

�kW(x, y, p)
�pk

�
p=0

(2.13)

�k(x, y)=
1
k !

�k�(x, y, p)
�pk

�
p=0

(2.14)

If Equations (2.11) and (2.12) are convergent, we obtain by Equation (2.8) that

�(x, y)=�0(x, y)+ �
+�

k=1

�k(x, y) (2.15)
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�(x, y)=�0(x, y)+ �
+�

k=1

�k(x, y) (2.16)

To give the governing equations and boundary conditions of �k(x, y) and �k(x, y), we first of
all differentiate each of the zero-order deformation equations (2.1)– (2.6) k times and then set
p=0 and finally divide each side of them by k !. In this way, we get the so-called kth-order
deformation equations (k=1, 2, 3 . . . )

L [�k
�(x, y), �k

�(x, y)]=��R�,k(x, y) (2.17)

�2[�k
�(x, y)]+�k

�(x, y)=��R�,k(x, y) (2.18)

and related boundary conditions

�k
�(x, y)=�b�k−1(x, y), when x=0 or x=1 or y=0 or y=1 (2.19)

�

�y
[�k

�(x, y)]=�b
���k−1(x, y)

�y
− (1−�k)

n
, when y=1 (2.20)

�

�y
[�k

�(x, y)]=�b

��k−1(x, y)
�y

, when y=0 (2.21)

�

�x
[�k

�(x, y)]=�b

��k−1(x, y)
�x

, when x=0 or x=1 (2.22)

where

R�,k(x, y)=�2�k−1(x, y)−Re �
k−1

j=0

���j(x, y)
�y

��k−1− j(x, y)
�x

−
��j(x, y)

�x
��k−1− j(x, y)

�y
n

(2.23)

R�,k(x, y)=�2�k−1+�k−1 (2.24)

with the following definitions:

�k
�(x, y)=�k(x, y)−�k�k−1(x, y) (2.25)

�k
�(x, y)=�k(x, y)−�k�k−1(x, y) (2.26)

�k=
�0, when k=1

1, when k�1
(2.27)

As soon as �k
�(x, y), �k

�(x, y) are known, we have via Equations (2.25) and (2.26) that
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�k(x, y)=�k
�(x, y)+�k�k−1(x, y) (2.28)

�k(x, y)=�k
�(x, y)+�k�k−1(x, y) (2.29)

Notice that the kth-order equations (2.17) and (2.18) and related boundary conditions
(2.19)– (2.22) are linear if �i(x, y) and �i(x, y), i=0, 1, 2, 3 . . . k−1, are known. Using the
given initial approximations �0(x, y) and �0(x, y), Equations (2.17) and (2.18) are solved for
�1

�(x, y) and �1
�(x, y) first and then �1(x, y) and �1(x, y) are calculated from Equations (2.28)

and (2.29). Then again using the known �1(x, y) and �1(x, y), Equations (2.17) and (2.18) are
solved for �2

�(x, y) and �2
�(x, y), etc.

If we consider only the first m terms of Equations (2.15) and (2.16), we have the mth-order
approximations

�(x, y)��0(x, y)+ �
m

k=1

�k(x, y) (2.30)

�(x, y)��0(x ,y)+ �
m

k=1

�k(x, y) (2.31)

They provide us with the mth-order iterative formulae

�0
i+1(x, y)��0

i (x, y)+ �
m

k=1

�k
i (x, y) (2.32)

�0
i+1(x, y)��0

i (x, y)+ �
m

k=1

�k
i (x, y) (2.33)

where i=0, 1, 2, 3 . . . , denotes the iteration number.

Table I. Parameters used for the first-order scheme (m=1)

��=��=�b �0Re �1

−1 41000 2
2 43200 −0.75

63−0.355000
−0.45 10 207500

Table II. Parameters used for the second-order scheme (m=2)

��=��=�b �1Re �0

42−11000
2 43200 −1
3 65000 −0.50

−0.25 5 107500
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Table III. Number of iterations for the first- and second-order scheme

First-orderRe Second-order
schemescheme

8 41000
11303200

5000 110 37
7500 117 80

Because the current approach is based on the HAM, it also provides us with great freedom
to select the auxiliary linear operator L, the initial guess �0(x, y), �0(x, y) and the auxiliary
parameters ��, ��, �b. As shown by Liao [11–14], this kind of freedom is the cornerstone of
the validity of the HAM and related numerical methods. For example, by the HAM, one has
freedom to select better auxiliary linear operators, initial guesses and auxiliary parameters to
ensure the series (2.15) and (2.16) is convergent. If they are properly selected so that Equations
(2.17)– (2.22) can be solved analytically, one can obtain analytic solutions (this is exactly the
idea of the HAM). If they are properly selected so that Equations (2.17)– (2.22) can be solved
by the traditional boundary element method, one is applying the so-called general boundary
element method [14]. As mentioned by Liao [17], one can use other numerical techniques, such
as the finite volume method (FVM), the finite difference method (FDM) and the finite element
method (FEM) to solve these linear sub-problems. And obviously, one can employ some
accelerating techniques to these linear sub-problems. The HAM transfers the original non-
linear problem into a series of linear sub-problems. Obviously, it is much easier to solve linear
PDEs than non-linear ones, and the multigrid method is rather efficient for solving linear
PDEs. Thus, it is logical and natural to combine the HAM with the multigrid methods.

3. MULTIGRID APPROACH

If we use mth-order iterative formulae (2.32) and (2.33), we need to solve the first m linear
PDEs (2.17)– (2.22) one after the other in order. Many numerical techniques can be applied.
In this paper, the linear PDEs (2.17)– (2.22) are solved by the multigrid technique. Considering
the simplicity in geometry of the driven-cavity flow, we use the FDM to solve Equations

Table IV. CPU time

Re First-order scheme Second-order scheme

1 min 30 s1 min 45 s1000
3200 5 min 7 s 3 min 27 s

18 min 30 s 12 min 7 s5000
7500 35 min 32 s 26 min 3 s

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 107–123
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Figure 2. Root-mean-square errors via iteration number. Solid line: first-order scheme; dash line:
second-order scheme.

(2.17)– (2.22) (one can also use the FVM, the FEM and so on in a similar way, if convenient).
The related formulations are given as follows.

In this paper, we use

L(W, �)=�2W−Re
���0

�y
�W
�x

−
��0

�y
��
�x

�
(3.1)

as our auxiliary linear operator, where �0(x, y), �0(x, y) are initial guess of streamfunction
and vorticity. The high-order iterative formulae (2.28) and (2.29) are used. At each iteration,
the calculated approximate results given by Equations (2.30) and (2.31) are used as new initial
guess approximations to make the next iteration (outer iteration), as expressed by Equations
(2.32) and (2.33). So, if the first-order (m=1) iterative formulae (2.28) and (2.29) are applied
and ��=��=�b= −� is employed, where ��0 is the relaxation parameter of the traditional
successive overrelaxation (SOR) iterative method, the current approach is just the same as the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 107–123
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Table V. Comparisons of the results about primary vortex with those given by Ghia
et al. [19]

Current results Results given by Ghia et al. [19]Re

�max ��,c x�,c y�,c �max ��,c x�,c y�,c

−0.1187 2.064 0.5313 0.5664 −0.11791000 2.050 0.5313 0.5625
−0.1209 1.945 0.5195 0.5393 −0.12043200 1.989 0.5165 0.5469
−0.1208 1.920 0.5156 0.53525000 −0.1190 1.8602 0.5117 0.5352
−0.12027500 1.894 0.5117 0.5313 −0.1200 1.8799 0.5117 0.5322

traditional multigrid technique for laminar viscous flows. Thus, our approach logically
contains some of the traditional iterative methods.

The essence of the multigrid method is to use a simple iterative technique as a smoother but
not a solver to reduce the high-frequency components of errors on the current computational
grid but to smooth out the low-frequency components of errors on coarser computational
grids. For details, refer to [1–3,10]. Let Gk denote the series of computational grids, where
k=0, 1, 2 . . . M. Here, G0 denotes the coarsest grid, GM the finest ones. For simplicity,
uniform grid is used at each level of grid. Let hk denote the step size on the grid Gk and
hk+1=hk/2 hold. On the grid Gk, let � i, j

k and � i, j
k denote the vorticity and streamfunction at

point (ihk, jhk). We use five-level grids, i.e. 257×257, 129×129, 65×65,33×33 and 17×17.
The V-cycle multigrid scheme is applied. Following Wesseling [18], we use the nine-point
restriction operator

(Rk
k−1f k)i+1, j+1

=
1
4

f2i+1,2j+1
k +

1
8

( f2i+2,2j+1
k + f2i+1,2j+2

k + f2i,2j+1
k + f2i+1,2j

k )

+
1
16

( f2i+2,2j+2
k + f2i,2j+2

k + f2i+2,2j
k + f2i,2j

k ) (3.2)

and the nine-point prolongation operator Pk
k−1 defined by

(Pk−1
k f k−1)2i+1,2j+1= f i+1, j+1

k−1 (3.3)

(Pk−1
k f k−1)2i+2,2j+1=

1
2

( f i+1, j+1
k−1 + f i+2, j+1

k−1 ) (3.4)

(Pk−1
k f k−1)2i+1,2j+2=

1
2

( f i+1, j+1
k−1 + f i+1, j+2

k−1 ) (3.5)

(Pk−1
k f k−1)2i+2,2j+2=

1
4

( f i+1, j+1
k−1 + f i+1, j+2

k−1 + f i+2, j+1
k−1 + f i+2, j+2

k−1 ) (3.6)
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Figure 3. Profiles of velocity u at x=1/2 for Re=1000, 3200, 5000, 7500. Solid line: current result; solid
circle: results given by Ghia et al. [19].

The SOR method is used as the smoothing operator S �, where � denotes the number of the
(inner) iterations. An ADI technique is employed. Second-order accurate central finite differ-
ence approximations are applied to all second-order derivatives in Equations (2.17) and (2.18).
The convective terms are represented via a first-order accurate upwind difference scheme, but
second-order accurate central-difference approximations are employed for all other first-order
derivatives in Equations (2.17) and (2.18). Following Ghia [19], we use on the boundary �D the
second-order accurate approximations

�2fJ=
1

2h2

�
8fJ−1− fJ−2−7f ��D−6h

�f
�n
�
�D

n
(3.7)

The corresponding boundary conditions (2.19)– (2.22) should be employed in the above
expressions. The value of � for the operator S � may be different at different grid Gk. On the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 107–123
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Figure 4. Profiles of velocity � at y=1/2 for Re=1000, 3200, 5000, 7500. Solid line: current result; solid
circle: results given by Ghia et al. [19].

coarsest grid G0, S � is used as a solver so that � should be large enough to make the iteration
convergent. On the other grids, S � is employed as a smoother so that a few iterations are
enough. In this paper, we set �=�0 on the finest grid and �=�1 on the other grids excluding
the coarsest one.

Let r0, rM denote the residuals of Equations (2.17) and (2.18) and related boundary
conditions (2.19)– (2.22) on the coarsest grid G0 and the finest grid GM, respectively. Conver-
gence is defined to occur when the Euclid norm of the residuals is below a specified tolerance.
On the coarsest grid G0, the convergence criterion is

	r0	�
	rM	
�M (3.8)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 107–123
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Figure 5. Contour of the streamfunction � when Re=1000.

where ��1, and 	r0	, 	rM	 are the Euclid norms of the residuals r0 and rM, respectively. Let
	rM

0 	 denote the Euclid norm of the original equations for the initial guess approximations
�0(x, y), �0(x, y) on the finest grid. The criterion for the finest grid is

	rM	�
	rM

0 	
	

(3.9)

where 	�1. The final result is obtained when the Euclid norm of the residual rM is less than
10−4. Notice that the iterative times on the coarsest grid G0 are determined by the convergence
criterion (3.8); however, the iterative times on the other grids are fixed, i.e. �0 on the finest grid
but �1 on the other grids excluding the coarsest one.

We employ the traditional V-cycle multigrid technique to solve m linear sub-problems
governed by Equations (2.17)– (2.22).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 107–123
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Figure 6. Contour of the streamfunction � when Re=3200.

4. NUMERICAL RESULTS

Equations (2.32) and (2.33) provide us with a family of iteration formulae. However, as a
starting point, in this paper we only consider two kinds, i.e. m=1 and m=2. The former
corresponds to the traditional multigrid method if we regard ��=��=�b= −�, where � is
the relaxation parameter of traditional SOR method (for outer iterations). The latter is the
second-order scheme of our current approach. Thus, we can compare the current approach
with traditional multigrid methods.

In this paper, four Reynolds numbers, Re=1000, 3200, 5000, 7500, are considered. In all
cases we use �=2, 	=5 and set all relaxation parameters of the smoother S � (inner iterations)
on all grids to be 0.25. The values of ��=��=�b and �0, �1 for first- and second-order
schemes are shown in Table I (m=1) and Table II (m=2), respectively. The corresponding
iteration number and related CPU times are given in Tables III and IV, respectively. The
curves of root-mean-square errors via the iteration number for the first- and second-order

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 107–123



S.-J. LIAO AND F. MASHAYEK120

Figure 7. Contour of the streamfunction � when Re=5000.

schemes are as shown in Figure 2. From Table III and Figure 2, the second-order formula
needs less iteration in all cases. Liao [14–17] reported the same results in some other problems
without using multigrid methods. Thus, this result has general meanings. From Table IV, the
second-order scheme (m=2) needs even less CPU time in all cases than the first-order scheme
(m=1) that corresponds to the traditional multigrid technique. This is because the second-
order scheme gives more accurate results than the first-order one and therefore accelerates the
iterations. Another reason might be that there exist strong, complicated, interactions between
inner and outer iterations of the multigrid method. Note that in the case of Re=5000, the
first-order formula diverges when ��=��=�b= −0.5 and therefore we had to decrease the
absolute value of ��=��=�b to make the iteration convergent. Besides, in the case of
Re=7500 and �0=5, �1=10, the first-order formula diverges and we had to increase the
iteration numbers at each grid level to make the iteration convergent. These verify that our
second-order approach seems more stable and converges faster than the traditional multigrid
method.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 107–123
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Figure 8. Contour of the streamfunction � when Re=7500.

The comparions of the center of the primary vortex, the values of vorticity and streamfunc-
tion there, with those reported by Ghia et al. [19], are given in Table V. Besides, the velocity
profiles of u at x=1/2 and � at y=1/2, compared with the results given by Ghia et al. [19] are
shown in Figures 3 and 4, respectively. The contours of the streamfunction � are shown in
Figures 5–8. All of these agree well with numerical results given by Ghia et al. [19]. Therefore,
our numerical results are reasonable.

5. CONCLUSIONS

In this paper, encouraged by the successful applications of a new kind of analytic technique,
namely the HAM, we further apply the basic ideas of this new analytic method to propose a
new numerical scheme for non-linear PDEs. By combining the HAM with the multigrid
techniques, we present a new multigrid scheme for laminar viscous flow problems governed by
the Navier–Stokes equations in the form of streamfunction � and vorticity �. At the lowest
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order (m=1), our approach is the same as the traditional multigrid method, so that it logically
contains the traditional ones (this is similar to the fact that the so-called general boundary
element method [14,15] contains the traditional boundary element method). Our calculations
show that the high-order (m=2) scheme seems more stable and converges faster than the
traditional multigrid method. Therefore, the development of some more efficient and stable
multigrid schemes for complicated viscous flow problems in CFD seems promising.

Notice that, with comparison to practical viscous flows, the driven-cavity viscous flow is
very simple. Thus, the validity of the proposed approach should be further assessed by
applying it to other more complicated three-dimensional viscous problems governed by the
Navier–Stokes equations in primitive variables. Notice that there exist many auxiliary parame-
ters in our approach, such as ��, ��, �b and so on, and it is interesting to investigate if they
have optimal values and how to determine them if the answer is positive. Notice also that in
this paper Equation (3.1) is employed as our auxiliary linear operator L. As pointed out by
Liao [12,13], the current approach provides us with great freedom to select the auxiliary linear
operator L and therefore many other linear operators might be possible. It would be
interesting to research how to select an optimal one from all these possible linear operators. All
of these problems are worth further investigations, as mentioned by Liao [12,13].
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