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Abstract Solution of non-similarity boundary-layer flows over a porous wedge is
studied. The free stream velocity Uw(x) ∼ a xm and the injection velocity Vw(x) ∼ b xn at
the surface are considered, which result in the corresponding non-similarity boundary-layer
flows governed by a nonlinear partial differential equation. An analytic technique for strongly
nonlinear problems, namely, the homotopy analysis method (HAM), is employed to obtain
the series solutions of the non-similarity boundary-layer flows over a porous wedge. An
auxiliary parameter is introduced to ensure the convergence of solution series. As a result,
series solutions valid for all physical parameters in the whole domain are given. Then, the
effects of the physical parameters on the skin friction coefficient and displacement thickness
are investigated. To the best of our knowledge, it is the first time that the series solutions of
this kind of non-similarity boundary-layer flows are reported.

Keywords Non-similarity · Boundary-layer flow · Porous wedge ·
Homotopy analysis method

1 Introduction

A milestone contribution in fluid mechanics was made by Prandtl (1904), who proposed
the revolutionary concept of the boundary-layer of viscous fluid. Since then, the boundary-
layer theory (Blasius 1908; Rosenhead 1963; Howarth 1938; Van Dyke 1962a,b, 1964, 1969,
1975; Tani 1977; Schlichting and Gersten 2000; Sobey 2000) has been greatly developed
and widely applied to many fields of science and engineering. In the frame of boundary-layer
theory, the original partial differential equations (PDEs) are often transferred into nonlinear
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ordinary differential equations (ODEs) by defining some similarity variables, corresponding
to the so-called similarity flows. Unfortunately, such kinds of transformations exist only for
some special flows and/or special boundary conditions. If the boundary-layer conditions or
the flows are so general that such kind of similarity transformation does not exist, one had to
solve nonlinear PDEs. Mathematically, it is easier to solve nonlinear ODEs than nonlinear
PDEs. So, it is easier to solve similarity boundary-layer flows than non-similarity ones. This
is the reason why most of publications for boundary-layer flows are related to similarity
flows.

Recently, the study of boundary-layer flow along surfaces embedded in fluid saturated
porous media has received considerable interest, especially in the enhanced recovery of
petroleum resources, packed bed reactors, and geothermal industries. The boundary-layer
behavior over a moving continuous solid surface is an important type of flow, occurring in
several engineering processes. For example, the thermal processing of sheet-like materials is
a necessary operation in the production of paper, linoleum, polymeric sheets, wire drawing,
drawing of plastic films, metal spinning, roofing shingles, insulating materials, and fine-fiber
mats. A main reason for the interest in analysis of boundary-layer flows along solid surfaces
is the possibility of applying the theory to the efficient design of supersonic and hypersonic
flights. Besides, the mathematical model considered in the present research has importance
in studying many problems of engineering, meteorology, and oceanography. Due to study
of heat and mass transfer in moving fluids, the applications of boundary layers extended to
different engineering branches. Examples include boundary-layer control on airfoils, tran-
spiration cooling of turbine blades, lubrication of ceramic machine parts, food processing,
electronics cooling, the extraction of geothermal energy, nuclear reactor cooling system, and
filtration process.

Some boundary-layer problems such as the stagnation flow (Xu et al. 2008), the flow over
a flat plate (Liao 2006), and the flow over a stretching sheet (Liao 2003a) are reported. The
steady laminar flow passing a fixed wedge was first analyzed in the early 1930s by Falkner
and Skan (1931)1 to illustrate Prandtl’s boundary-layer theory. With a similarity transforma-
tion, the boundary-layer equations are reduced to a nonlinear ODE, which is called now the
Falkner–Skan equation. This equation includes a non-uniform outer flow with the velocity in
the form axm , where x is the coordinate measured along the wedge wall, with the constant
a and m. Hsu et al. (1997) studied the combined effects of the shape factor, suction/injec-
tion rates, and viscoelasticity on the flow and temperature fields of the flow past a wedge.
Magyari and Keller (2000) obtained the exact solutions for the two-dimensional similarity
boundary-layer flows induced by permeable stretching surfaces. Rajagopal and Gupta (1984)
gave non-similarity solutions for the flow of a second grade fluid over wedge. This work was
followed by Rajagopal et al. (1987), where non-similarity solutions were obtained for the
flow over stretching sheet with uniform flow stream. Koh and Hartnett (1961) have solved
the skin friction and heat transfer for incompressible laminar flow over porous wedges with
suction and variable wall temperature.

Generally speaking, it is difficult to solve nonlinear PDEs, especially by means of the
analytic method. Using the perturbation methods or the traditional non-perturbation meth-
ods such as Lyapunov’s small parameter method (Lyapunov 1992), the δ-expansion method
(Karmishin et al. 1990), and Adomian’s decomposition method (Adomian 1994), it is difficult
to get analytic approximations convergent for all physical parameters in the infinite domain
of the flows, because all of these techniques cannot ensure the convergence of approximation

1 See http://demonstrations.wolfram.com/NumericalSolutionOfTheFalknerSkan EquationForVariousWedge
Angl/ and http://library.wolfram.com/infocenter/MathSource/6003/.
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series. The analytic method most frequently used in non-similarity boundary layer flows
is the so-called ‘method of local similarity’. Sparrow et al. (1970) introduced this method
under some additional assumptions and applied it to some non-similarity flows (Sparrow et
al. 1971). Massoudi (2001) used it to solve a non-similarity flow of non-Newtonian fluid
over a wedge. In some cases, the results given by the method of local non-similarity agree
with numerical solutions, as mentioned in Wanous and Sparrow (1965) and Catherall et al.
(1965). However, the results given by the method of local similarity are not very accurate,
as pointed out by Sparrow et al. (1971), and besides are valid only for small ξ in general, as
mentioned by Massoudi (2001).

The purpose of this article is to give the convergent series solution of the non-similarity
boundary-layer flows over a porous wedge by means of the homotopy analysis method
(HAM), an analytic approach for strongly nonlinear problems. Unlike the perturbation tech-
niques, the HAM is independent of small/large physical parameters. Besides, it provides us
with a simple way to control and adjust the convergence of solution series. Furthermore,
it provides great freedom to choose the so-called auxiliary linear operator so that one can
approximate a nonlinear problem more effectively by means of better base functions. The
HAM has been successfully applied to solve many strongly nonlinear problems, such as
Thomas–Fermi equation (Liao 2003b), non-linear water wave problems (Liao and Cheung
2003), magnetohydrodynamic (MHD) flows of non-Newtonian fluids over the stretching
sheet (Liao 2003a), non-Darcy natural convection (Wang et al. 2003), MHD flows of an
Oldroyd-6 constant fluids (Hayat et al. 2004), free oscillations of self-excited systems (Liao
2004), boundary-layer flows (Liao and Pop 2004; Liao 2009), and so on. Especially, a few
new solutions of some non-linear problems (Liao 2005; Liao and Magyari 2006) are found,
which were neglected by all other analytic methods and even by numerical techniques. The
HAM has also been applied to solve some non-linear PDEs, such as unsteady similarity
boundary-layer flows (Liao 2006), Black–Scholes type equation in finance for American put
option (Zhu 2006a,b), and so on. All of these successful applications verified the validity,
effectiveness, and flexibility of the HAM. These previous work provide us a good background
for our work mentioned in this article.

2 Mathematical Formulations

Consider a steady-state, two-dimensional, and incompressible boundary-layer flow. We for-
mulate the problem in a coordinate system as shown in Fig. 1, where x is measured along the
surface of the wedge from the apex, and y is normal to the wedge surface, respectively. In
the frame of boundary-layer theory (Schlichting and Gersten 2000), the flow is governed by

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2 , (1)

∂u

∂x
+ ∂v

∂y
= 0, (2)

subject to the boundary conditions

u = 0, v = Vw(x) = b xn, at y = 0, and u = U (x) = a xm, as y → ∞, (3)

where u and v are the velocity components along and cross the flow, respectively, and ν
the kinematic viscosity of the fluid. Here, Vw(x) = bxn represents the suction (b > 0) or
injection (b < 0) velocity, and U (x) = axm denotes the outer flow velocity, where a > 0
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Fig. 1 The coordinate system

is an arbitrary constant and m is related to the angle of the wedge πθ by m = θ/(2 − θ),
as shown in Fig. 1. The first term on the right-hand side of Eq. 1 represents the effect of the
axial pressure gradient which exists due to the variable velocity U (x) of the external flow
stream.

First, we transform the governing equations from the x, y coordinate system to ξ, η system
by means of the Görtler Transformations (Schlichting and Gersten 2000)

ξ = 1

ν

x∫

0

U (x)dx and η = U (x)y

ν
√

2ξ
. (4)

The coordinate η, which involves both x and y, becomes a similarity variable if the flow is a
similarity ones. However, ξ is related to x only. Let ψ denote the stream function satisfying

u = ∂ψ

∂y
and v = −∂ψ

∂x
. (5)

Following the Görtler Transformations, we write the dimensionless variables and stream
function in Eq. 3 as

ψ(x, y) =
√

2aν

(m + 1)
x
(m+1)

2 f (ξ, η) (6)

ξ = axm+1

ν(m + 1)
and η =

√
a(m + 1)

2ν
x
(m−1)

2 y. (7)

Then, the governing Eqs. (1) and (2) become

fη η η + f fη η + β (1 − f 2
η ) = 2 ξ ( fη fξ η − fξ fη η) (8)

with the so-called principal function

β(ξ) = 2
U

′
(x)

U 2(x)

x∫

0

U (x)dx, (9)
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subject to the boundary conditions

fη = 0, f (ξ, 0)+ 2 ξ fξ (ξ, 0) = γ ξκ , at η = 0, and fη = 1 as η → ∞, (10)

where γ = −√
2 a−κ−1/2 b [ν (m + 1)]κ−1/2 and κ = (m + 1)−1 [n − (m − 1)/2] are

constants. Note that, when U (x) = axm , the principal function (9) is reduced to the constant
β = 2m/(m + 1). Here, γ is the suction/injection parameter, where b ∈ R and a > 0, and
κ defines the relation between the injection index n and the wedge angle parameter m. Note
that γ = 0 is the necessary condition of the existence of similarity solutions.

2.1 HAM Solution

In order to find the analytic approximations of Eq. 8 subject to the boundary condition (10),
we apply the HAM, a widely used analytic method for highly nonlinear equations.

2.1.1 The Zeroth-Order Deformation Equation

The HAM is based on such a continuous mapping�(ξ, η; q) that, as the embedding param-
eter q increases from 0 to 1, �(ξ, η; q) varies (or deforms) from the initial approximation
f0(ξ, η) to the exact solution f (ξ, η) of Eqs. 8 and 10, i.e. �(ξ, η; q) : f0(ξ, η) ∼ f (ξ, η).
According to Eq. 8, we define a nonlinear operator

N [�(ξ, η; q)] = ∂3�(ξ, η; q)

∂η3 +�
∂2�(ξ, η; q)

∂η2 + β

[
1 −

(
∂�(ξ, η; q)

∂η

)2
]

−2 ξ

[
∂�(ξ, η; q)

∂η

∂2φ(ξ, η; q)

∂ξ ∂η
− ∂�(ξ, η; q)

∂ξ

∂2�(ξ, η; q)

∂η∂η

]
, (11)

where q ∈ [0, 1] is the embedding parameter. Let h̄ denote a nonzero auxiliary parameter,
L an auxiliary linear operator, and f0(ξ, η) an initial guess that satisfies the boundary con-
ditions (10). Note that we have great freedom to choose the auxiliary linear operator L and
the initial guess f0(ξ, η), and both L and f0(ξ, η) are unknown right now but will be chosen
later. Then, we construct a homotopy

H[�(ξ, η; q); h̄, q] = (1 − q)L[�(ξ, η; q)− f0(ξ, η)] − q h̄ N [�(ξ, η; q)].
Enforcing H[�(ξ, η; q); h̄, q] = 0, we have a family of equations

(1 − q) L[�(ξ, η; q)− f0(ξ, η)] = q h̄ N [�(ξ, η; q)] , (12)

subject to two boundary conditions on the wedge surface

�η(ξ, 0; q) = 0, (13)

(1 − q) [�(ξ, 0; q)− f0(ξ, 0)] = q h̄b
[
�(ξ, 0; q)+ 2 ξ �ξ − γ ξκ

]
, (14)

and one boundary condition at infinity

�η(ξ,∞; q) → 1. (15)

Since the initial guess f0(ξ, η) satisfies the boundary conditions, it is obvious that, when
q = 0, the solution of Eqs. 12–15 reads

�(ξ, η; 0) = f0(ξ, η). (16)
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When q = 1, since h̄ �= 0, Eqs. 12–15 are equivalent to Eqs. 8–10, respectively, provided

�(ξ, η; 1) = f (ξ, η). (17)

Therefore, as the embedding parameter q increases from 0 to 1, �(ξ, η; q) varies from the
initial approximation f0(ξ, η) to the exact solution f (ξ, η). In topology, this kind of varia-
tion is called deformation, and Eqs. 12–15 construct the homotopy �(ξ, η; q). For brevity,
Eqs. 12–15 are called the zeroth-order deformation equations.

Using (16) and Taylor’s theorem, we expand �(ξ, η; q) in power series of q as

�(ξ, η; q) = f0(ξ, η)+
+∞∑
m=1

fm(ξ, η) qm , (18)

where

fm(ξ, η) = 1

m!
∂m�(ξ, η; q)

∂qm

∣∣∣∣
q=0

.

It should be emphasized that there exists an auxiliary parameter h̄ in the zeroth-order
deformation Eq. (12) so that�(ξ, η; q) and thus fm(ξ, η) are dependent upon h̄. Besides, we
have great freedom to choose the auxiliary linear operator L and the initial guess f0(ξ, η).
As a result, the convergence region of the series (18) is dependent upon h̄, f0(ξ, η) and L.
Assuming that all of them are so properly chosen that the series (18) is convergent at q = 1,
we have from Eq. 17 that

f (ξ, η) = f0(ξ, η)+
+∞∑
m=1

fm(ξ, η). (19)

This provides us a relationship between the initial guess f0(ξ, η) and the exact solution
f (ξ, η).

2.1.2 The High-Order Deformation Equation

For brevity, define the vector

�fm = { f0(ξ, η), f1(ξ, η), f2(ξ, η), . . . , fm(ξ, η)}. (20)

Differentiating the zeroth-order deformation Eqs. 12–15 m times with respect to the embed-
ding parameter q , then setting q = 0, and finally dividing by m!, we have the so-called
mth-order deformation equation

L[ fm(ξ, η)− χm fm−1(ξ, η)] = h̄ Rm( �fm−1) , (21)

subject to the boundary conditions on the wedge

∂ fm

∂η
= 0, at η = 0, (22)

fm − χm fm−1 = h̄b

[
fm−1 + 2 ξ

∂ fm−1

∂ξ
− γ ξκ(1 − χm)

]
, at η = 0, (23)

and the boundary condition at infinity

∂ fm

∂η
= 0 as η → ∞, (24)
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where

Rm( �fm−1) = ∂3 fm−1

∂η3 +
m−1∑
n=0

fm−1−n
∂2 fn

∂η2 − β

m−1∑
n=0

∂ fm−1−n

∂η

∂ fn

∂η

+ 2 ξ
m−1∑
n=0

[
∂ fn

∂ξ

∂2 fm−1−n

∂η2 − ∂ fn

∂η

∂2 fm−1−n

∂ξ ∂η

]
+ β (1 − χm) (25)

with the definition

χm =
{

0, m ≤ 1,
1, m > 1.

(26)

2.1.3 Solution Expression

As mentioned earlier, we have great freedom to choose the auxiliary linear operator L, the
initial guess f0(ξ, η) and the auxiliary parameter h̄. As a starting point, we should find a
proper set of base functions to fit the solutions. Physically, it is well known that most vis-
cous flows decay exponentially at infinity (i.e. as η → +∞). So, without loss of generality,
f (ξ, η) can be expressed by the set of base functions

{ξn ηk e−m λη | n ≥ 0, k ≥ 0, m ≥ 0, λ > 0}
in the form

f (ξ, η) =
∞∑

m=0

∞∑
n=0

∞∑
k=0

ak
m,n ξ

n ηk e−m λη, (27)

where ak
m.n is a coefficient to be determined. Our purpose is to give a convergent series solu-

tion for the nonlinear PDEs (8) and (10), expressed in the so-called solution expression (27).
In order to obey the solution expression (27) and the boundary conditions (10), we choose
the initial guess f0(ξ, η)

f0(ξ, η) = η − e−λ η

λ
+ e−2 λ η

λ
+ γ ξκ

(1 + 2 κ)
. (28)

Besides, physically speaking, for boundary-layer flows, the velocity variation across the
flow direction is much larger than that in the flow direction. Therefore, the derivatives across
the flow direction (i.e. with respect to η) are considerably larger and thus physically more

important than the derivatives ∂ f
∂ξ

and ∂2 f
∂ξ∂η

. Considering that the original equation is third
order, we can choose such an auxiliary linear operator

Lw = ∂3w

∂η3 + a2(ξ)
∂2w

∂η2 + a1(ξ)
∂w

∂η
+ a0(ξ)w, (29)

where a0(ξ), a1(ξ) and a2(ξ) are real functions to be determined later. Letw1(ξ, η),w2(ξ, η)

and w3(ξ, η) denote the three solutions of Lw = 0, i.e.

L[w1(ξ, η)] = 0, L[w2(ξ, η)] = 0, and L[w3(ξ, η)] = 0. (30)

According to the solution expression (27) and considering the boundary condition (10) at
infinity, we could choose

w1 = 1, w2 = exp(−λ η), w3 = exp(λ η), (31)
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where λ > 0 is an auxiliary parameter. Then, the general solution of (21) reads

fm(ξ, η) = f ∗
m(ξ, η)+ C1 + C2 exp(−λ η)+ C3 exp(λ η). (32)

where f ∗
m(ξ, η) is the special solution of Eq. 21. To satisfy the boundary condition (24) at

infinity, it holds C3 = 0. Then, C1 and C2 are determined by the boundary conditions (22)
and (23). Substituting (31) into (30) gives the auxiliary linear operator

L f = ∂3 f

∂η3 − λ2 ∂ f

∂η
. (33)

Note that, if we choosew3 = exp(−2λ η), then the boundary condition (24) is automatically
satisfied by any values of C1,C2 and C3, and thus C3 has multiple solutions. This can be
avoided by choosing w3 = exp(+λ η). Besides, it should be emphasized that the original
nonlinear PDE (8) is transferred into an infinite number of linear ODEs (21) by means of
choosing the auxiliary linear operator (33). Obviously, it is much easier to solve a linear ODE
than a nonlinear PDE! It also should be pointed out that the auxiliary linear operator (33)
has not close relationship to the original governing equation (8). In fact, the same auxiliary
linear operator (33) has been used for different types of similarity flows (Liao 2003c; Liao
and Pop 2004).

It is easy to solve the linear ODE (21), subject to the linear boundary conditions (22)–(24).
The special solution of (21) reads

f ∗
m(ξ, η) = χm fm−1(ξ, η)+ h̄ L−1 [Rm( �fm−1)], (34)

where L−1 denotes the inverse operator of L. Thus, the solution of the high-order deformation
equations (21)–(24) is

fm(ξ, η) = f ∗
m(ξ, η)+ C1 + C2 e−λ η, (35)

where

C1 = χm fm−1(ξ, 0)+ h̄b

[
fm−1(ξ, 0)+ 2ξ

∂ fm−1(ξ, 0)

∂ξ
− γ ξκ(1 − χm)

]

−C2 − f ∗
m(ξ, 0). (36)

and

C2 = 1

λ

∂ f ∗
m

∂η

∣∣∣∣
η=0

(37)

are determined by the boundary conditions (22) and (23). Therefore, high-order approxi-
mations of f (ξ, η) can be obtained, especially by means of symbolic computation such as
Mathematica, Maple, and so on.

The physical quantities of interest are the coefficient of the skin friction and the displace-
ment thickness, defined by

C f = 2 τw
ρ U 2

w

, (38)

where

τw = µ
∂u

∂y

∣∣∣∣
y=0

. (39)
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Under the transformations (7), the coefficient of the skin friction for the non-similarity flow
is

C f =
√

2ν(m + 1)
√

a x
m+1

2

∂2 f

∂η2

∣∣∣∣
η=0

,

or

C f = 2√
ξ

∂2 f

∂η2

∣∣∣∣
η=0

. (40)

The boundary-layer thickness of the non-similarity flow reads

δ(ξ) = 1

U∞

∞∫

0

[U∞ − u(ξ, η)] dy.

Hence, we have in view of Eq. 7 that

δ(ξ) =
√
ν

a

∞∫

0

[
1 − fη(ξ, η)

]
dη. (41)

3 Result Analysis

Liao (2003c) proved in general that, as long as a solution series given by the HAM con-
verges, it must be one of solutions. Therefore, it is very important to ensure the convergence
of the solution series given by HAM. Note that solution series (19) contains two auxiliary
parameters h̄b and h̄. For simplicity, we take here h̄b = h̄. Note that κ is dependent upon
the injection index n and the wedge parameter m, and γ is related to the injection velocity
Vw(x) through constant b. Note that γ > 0 when b is negative (suction), and γ < 0 when b
is positive (injection).

The case γ = 0 corresponds to the boundary-layer flows past a non-porous wedge, which
is the famous Falkner–Skan problem2 with similarity solutions. So, in the case of γ = 0,
f (ξ, η) is independent of ξ . Without the loss of generality, let us consider the case of β = 1,
and check the influence of λ and h̄ on the solution series of f ′′(ξ, 0). First, we set h̄ = −1
so that the solution series depends on the λ only, and then we investigate the influence of λ
on f ′′(ξ, 0) by plotting the curves of f ′′(ξ, 0) ∼ λ. It is found that, when λ ≥ 5, the series
f ′′(ξ, 0) converges to the same value. Second, we set λ = 5 and regard h̄ as a unknown
variable. In this case, the square residual error of the governing equation is dependent upon
h̄. It is found that, in the case of γ = 0, the residual square error decreases when h̄ = −1 and
λ = 5. Besides, the so-called homotopy-Padé technique (Liao 2003c) is used to accelerate
the convergence, and our results agree well with the numerical one given by Hartree’s (1937),
as shown in Table 1. This verifies the validity of the proposed analytic approach.

Secondly, we consider the case γ = 1 (suction) with β = 1, and κ = 1/2. Similarly, for
given β, κ and γ , our solution series (19) depends upon two auxiliary parameters λ and h̄.
Figure 2 shows the influence of the auxiliary parameter λ on the solution series when h̄ = −1.
It is found that the series solution converges for small as well as for large ξ when λ ≥ 5. So,
we set λ = 5. Then, it is found that the region for the convergence of the solution series (19)

2 See http://demonstrations.wolfram.com/NumericalSolutionOfTheFalknerSkanEquationForVariousWedge
Angl/.
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Table 1 Comparison between Hartree’s numerical result and homotopy-Padé approximation of f ′′(ξ, 0)
when γ = 0 by means of λ = 5 and h̄ = −1

β [20, 20] [30, 30] [40, 40] Hartree’s results

1 1.2327 1.2326 1.2326 1.2326

2 1.6872 1.6872 1.6872 1.6872

Fig. 2 The 15th-order
approximation of f ′′(ξ, 0) when
β = 1, γ = 1, κ = 1/2 by means
of h̄ = −1
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ξ

Fig. 3 The square residual error
versus h̄ when β = 1, κ = 1/2,
γ = 1 by means of λ = 5. Solid
line the 8th-order approximation;
dashed line the 10th-order
approximation
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is about −6/5 ≤ h̄ ≤ −1/2, as shown in Fig. 3. It is clear from Fig. 4 that, when β = 1,
γ = 1, and κ = 1/2, our series solution given by λ = 5 and h̄ = −1 converges in the domain
0 ≤ ξ < ∞ and 0 ≤ η < ∞, corresponding to 0 ≤ x < ∞ and 0 ≤ y < ∞, respectively.
Besides, as shown in Fig. 4, our 20th and 25th order HAM results agree well with the 8th and
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ξ
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Fig. 4 Comparison of the analytic approximation of f ′′(ξ, 0) with homotopy-Padé approximation when
γ = 1, β = 1, κ = 1/2 by means of h̄ = −1 and λ = 5. Solid line [6,6] homotopy-Padé approxima-
tion; dashed line [4,4] homotopy-Padé approximation; squares 25th-order approximation; circles 30th-order
approximation

Table 2 Square residual error
when β = 1, γ = 1 and κ = 1/2
by means of λ = 5 and h̄ = −1

Order of approximation Residual error

1st 2519.99

5th 2.70965

10th 0.137226

15th 0.0207309

12th order homotopy-Padé approximation. In order to ensure the convergence of the solution
given by HAM, we substitute the solutions given by HAM into the original equations and
evaluate the error. It is clear from Table 2 that error is decreasing by increasing the order
of the original equation. This indicates that our HAM series solution is indeed convergent.
Similarly, in the case of γ = −1/4 with β = 1 and κ = 1/2, our series solution converges by
means of λ = 5 and h̄ = −1. It is found that, in general cases, our series solutions converge
by means of λ = 5 and h̄ = −1 in the whole spatial domain.

The interesting quantities are the skin friction and the displacement thickness. Their varia-
tion with the suction/injection velocity is of importance. The injection increases the boundary-
layer thickness and thus decreases the skin friction. On the other hand, the suction decreases
the boundary-layer thickness and therefore gives rise to the velocity gradient, which in turn
increases the skin friction.

According to Eq. 40, fηη(ξ, 0) is related with the skin friction. Figures 5 and 6 represent
the effect of the parameter γ on the skin friction coefficient and displacement thickness for
β = 1, κ = 1/2 by means of λ = 5 and h̄ = −1. It is clear from the figures that the injection
increases the displacement thickness and decreases the shear stress (skin friction), but the
suction decreases boundary-layer thickness and increases the skin friction. It is also noted
that the non-similarity solutions are very close to the similarity ones as ξ → 0 for κ > 0.

123



N. Kousar, S. Liao

Fig. 5 Influence of γ on the
displacement thickness δ(ξ)/

√
ν

when β = 1, κ = 1/2 by means
of h̄ = −1 and λ = 5. Solid line
40th-order approximation for
γ = 0; dashed line 30th-order
approximation for γ = 1;
dash-dotted line 30th-order
approximation for γ = −1/4;
squares [15,15] homotopy-Padé
approximation for γ = 0; open
circles [6,6] homotopy-Padé
approximation for γ = 1, filled
circles [6,6] homotopy-Padé
approximation for γ = −1/4
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Fig. 6 Influence of γ on the skin friction coefficient C f when β = 1, κ = 1/2 by means of h̄ = −1 and
λ = 5. Solid line 40th-order approximation for γ = 0; dashed line 30th-order approximation for γ = 1;
dash-dotted line 30th-order approximation for γ = −1/4; squares [12,12] homotopy-Padé approximation
for γ = 0; open circles [6,6] homotopy-Padé approximation for γ = 1; filled circles [6,6] homotopy-Padé
approximation for γ = −1/4

Figures 7 and 8 show the influence of γ on the displacement thickness and the skin friction
coefficient when κ = −1/4, β = 1 by means of λ = 5 and h̄ = −1. Again, it is observed
from these figures that the suction decreases the thickness but increases the shear stress, and
the injection increases the thickness but decreases the wall shear stress. It is also observed that
the non-similarity flows are close to the similarity ones as ξ → ∞. Hence, the non-similarity
flows in the region ξ → 0 for κ > 0 and ξ → ∞ for κ < 0 are very close to the similarity
ones, respectively.

The influence of the parameter β on the skin friction coefficient and the boundary-layer
thickness is as shown in Figs. 9 and 10 when γ = 1, κ = 1/2 by means of λ = 5 and h̄ = −1.
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Fig. 7 Influence of γ on the
displacement thickness δ(ξ)/

√
ν

when β = 1, κ = −1/4 by means
of h̄ = −1 and λ = 5. Solid line
35th-order approximation for
γ = 0; dashed line 30th-order
approximation for γ = 1;
dash-dotted line 30th-order
approximation for γ = −1/4;
squares [12,12] homotopy-Padé
approximation for γ = 0; open
circles [6,6] homotopy-Padé
approximation for γ = 1; filled
circles [6,6] homotopy-Padé
approximation for γ = −1/4
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Fig. 8 Influence of γ on the skin friction coefficient C f when β = 1, κ = −1/4 by means of h̄ = −1 and
λ = 5. Solid line 35th-order approximation for γ = 0; dashed line 30th-order approximation for γ = 1;
dash-dotted line 30th-order approximation for γ = −1/4; squares [12,12] homotopy-Padé approximation
for γ = 0; open circles [6,6] homotopy-Padé approximation for γ = 1; filled circles [6,6] homotopy-Padé
approximation for γ = −1/4

Note that, as β varies from 0 to 2, the friction coefficient increases but the displacement
thickness decreases. In the similar way, we investigate the influence of β on the displacement
thickness and skin friction in the case of γ < 0, and it is observed that the thickness increases
and shear stress decreases in the case of injection. Thus by means of HAM, we obtain the
analytic solutions which are uniformly valid for all the physical parameters in the whole
domain.

123



N. Kousar, S. Liao

Fig. 9 Influence of β on the
displacement thickness δ(ξ)/

√
ν

when γ = 1, κ = 1/2 by means
of h̄ = −1 and λ = 5. Solid line
[6,6] homotopy-Padé
approximation for β = 0; dashed
line [6,6] homotopy-Padé
approximation for β = 1;
dash-dotted line [6,6]
homotopy-Padé approximation
for β = 2
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Fig. 10 Influence of β on the skin friction coefficient C f when γ = 1, κ = 1/2 by means of h̄ = −1
and λ = 5. Solid line [6,6] homotopy-Padé approximation for β = 0; dashed line [6,6] homotopy-Padé
approximation for β = 1; dash-dotted line [6,6] homotopy-Padé approximation for β = 2

4 Conclusion and Discussion

In this article, the non-similarity boundary-layer flows over a porous wedge are studied. The
free stream velocity Uw(x) ∼ a xm and the injection velocity Vw(x) ∼ b xn at the surface
are considered, which result in the corresponding non-similarity boundary-layer flows gov-
erned by a nonlinear PDE. An analytic technique for strongly nonlinear problems, namely,
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the HAM, is employed to obtain the series solutions of the non-similarity boundary-layer
flows over a porous wedge. An auxiliary parameter is introduced to ensure the convergence
of solution series. As a result, series solutions valid for all physical parameters in the whole
domain are given. The effects of the physical parameters on the skin friction coefficient and
displacement thickness are then investigated. To the best of our knowledge, it is the first time
that the series solutions of this kind of non-similarity boundary-layer flows are reported.

Mathematically, non-similarity boundary-layer flows are governed by nonlinear PDEs.
However, by means of the HAM, the nonlinear PDE related to the non-similarity boundary-
layer flows is transferred into an infinite number of linear ODEs, which are easy to solve,
especially by means of symbolic computation software. In physics, this is mainly because,
for the boundary-layer flows, the variation cross the flow is much more larger and thus more
important than the variation along the flow. So, this analytic approach has general meanings
and can be used to solve other non-similarity boundary-layer flows in a similar way.
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