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Abstract

Consideration is given to the homoclinic solutions of ordinary differential equations. We first review the Melnikov
analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a
hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method (HAM, see [Liao SJ. Beyond
perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003; Liao SJ.
An explicit, totally analytic approximation of Blasius’ viscous flow problems. Int J Non-Linear Mech 1999;34(4):759–
78; Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004;147(2):499–513] and
others [Abbasbandy S. The application of the homotopy analysis method to nonlinear equations arising in heat trans-
fer. Phys Lett A 2006;360:109–13; Hayat T, Sajid M. On analytic solution for thin film flow of a forth grade fluid down
a vertical cylinder. Phys Lett A, in press; Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solu-
tions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn, in press]), we obtain homoclinic
solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show
that the Melnikov type function can be obtained as a special case of this homotopy analysis method. Finally, homo-
clinic solutions are obtained (for nontrivial examples) analytically by HAM, and are presented through graphs.
� 2007 Published by Elsevier Ltd.
1. Introduction

The exact or reduced order nonlinear dynamics of many mechanical models or infinite-dimensional systems can be
described by single-degree-of-freedom oscillators: That is, by second-order ordinary nonlinear differential equations
(for examples see [7,8]).

These systems are described by the equation
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Plea
Solit
d2x
dt2
¼ f ðxÞ þ egðx; _x; tÞ; x 2 R: ð1:1Þ
This is equivalent to the first-order system
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Plea
Soli
_x ¼ y;

_y ¼ f ðxÞ þ egðx; y; tÞ

� �
x

y

� �
2 R2: ð1:2Þ
We assume that f(x) and gðx; _x; tÞ are sufficiently smooth and bounded on a bounded set, which provide the existence of
a solution on the bounded set.

In (1.1) the mechanical differences between various systems are taken into account by considering different nonlinear
stiffness, that is, different restoring forces f ðxÞ. These forces have strong consequences in terms of the dynamical
response. For example, for softening versus hardening systems; for left versus right bending of the nonlinear resonance
curve; and for escape versus scattered chaotic attractor for large excitation amplitude. In spite of these important dis-
tinctions, there are some common dynamical features which permit a unified approach to the analysis of various
oscillators.

The formation of homoclinic orbit is taken as one of the criteria of transition from regular to chaotic behavior in
solutions of a dynamical system (for details see [9,10]).

The aim of the present work is to find a homoclinic (or heteroclinic) solution of equation (1.1). By definition, homo-
clinic and heteroclinic orbits correspond to the intersection of the stable and unstable manifolds of certain types of
invariant sets. As a consequence, one of the earliest method to determine the conditions for the existence of such orbits
is very well known through the Melnikov method (see, for example, [11,12]) which uses a function equivalent to the
distance between the relevant stable and unstable manifolds. Specific criteria for the existence are obtained by making
this distance equal to zero. As we notice in the following section, in order to apply this method, in Eq. (1.1) e must be a
small parameter and exact analytical solution of (1.1) must be known for e ¼ 0. It is well known that generally we can
not find the exact analytical solution of second-order nonlinear differential equation, and e in Eq. (1.1) may not be
small. In these cases, literature review reveals that there is no work dealing with the analytical approximation of homo-
clinic orbit except the work of the Manucharyan and Mikhlin [13]. However, even this work [13] is limited to some spe-
cial type of differential equations.

Hence, in this paper, for a given differential equation with a hyperbolic equilibrium, a new approach is proposed to
the construction of homoclinic orbit in nonlinear dynamical systems with two-dimensional phase space. Homotopy
analysis method (HAM) is used to approximate both homoclinic orbit in the phase space and the corresponding solu-
tion as a function of time. Finally, this method is applied to nontrivial examples, for which homoclinic solutions are
obtained analytically and evaluated numerically.
2. Melnikov analysis

For this method, we assume that e is a small parameter, so perturbation analysis can be developed and for e ¼ 0, the
system has an orbit xuðtÞ (unperturbed unstable manifold) backward-asymptotic to a hyperbolic saddle point
p0 ¼ ½p0; 0�

T, that is, limt!�1xuðtÞ ¼ p0; f ðp0Þ ¼ 0, and, fxðp0Þ ¼ k2, where, fxð�Þmeans the derivative of f ðxÞ with respect
to its argument x. We also note that if e ¼ 0, the system is called ‘‘unperturbed’’. Also, we have Hamiltonian with
Hðx; _xÞ ¼ _x2

2
þ
R

f ðsÞds� C, where the constant C is chosen in such a way that Hðx; _xÞ ¼ 0. Hence, the orbit xuðtÞ
can be computed from the first-order equation
_x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 C �

Z
f ðsÞds

� �s
and lim

t!�1
xuðtÞ ¼ p0: ð2:1Þ
Next, it is clear that the function t ! q0ðtÞ ¼ ½xuðtÞ; _xuðtÞ�T in the phase space parametrically describes unstable man-
ifold W uðp0Þ of p0. Now, in order to see the effect of the perturbation egðx; _x; tÞon the unstable orbit, as in [9, Lemma
4.5.2], we express xu

hðtÞ; f ðxu
hÞ; gðxu

h; _xu
h; tÞ on the interval �1 < t 6 t0 in the following perturbative form
xu
hðtÞ ¼ xuðt � t0Þ þ exu

1ðtÞ þ � � � ;
f ðxu

hÞ ¼ f ðxuÞ þ ef ðxuÞxu
1 þ � � � ;

gðxu
h; _xu

h; tÞ ¼ gðxu; _xu; tÞ . . .

ð2:2Þ
Substitution (2.2) into (1.1) and collecting like power of e, we obtain
f€xu � f ðxuÞg þ ef€xu
1 � f;xðxuÞxu

1 � gðxu; _xu; tÞg þ � � � ¼ 0: ð2:3Þ
Because of (2.1), first term is zero. Equating zero and the terms multiplying successive powers of e, we get
€xu
1ðtÞ ¼ f;xðxuÞxu

1ðtÞ þ gðxu; _xu; tÞ: ð2:4Þ
se cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
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Since yu
1 ¼ _xðt � t0Þ is one of the solutions of the homogeneous part of the equation, second solution can be found by

using the Wronskian expression and Abel theorem as
Plea
Solit
_yu
1ðtÞyu

2ðtÞ � _yu
2ðtÞyu

1ðtÞ ¼ 1: ð2:5Þ
Since, this is a first-order linear equation in the unknown yu
2ðtÞ we can solve easily to obtain
yu
2ðtÞ ¼ �yu

1ðtÞ
Z

ds

ðyu
1ðsÞÞ

2
: ð2:6Þ
Now, using the variation of parameter method, we obtain from (2.4)
xu
1ðtÞ ¼ c1yu

1ðtÞ þ c2yu
2ðtÞ � yu

2ðtÞ
Z t

t0

yu
1ðtÞgðxu; _xu; sÞdsþ yu

1ðtÞ
Z t

t0

yu
2ðtÞgðxu; _xu; sÞds: ð2:7Þ
Since yu
1ðtÞ ffi ekt; k > 0 for t ! �1 (because p0 is a hyperbolic fixed point), hence yu

2ðtÞ ffi e�kt. Thus yu
1ðtÞ vanishes

and yu
2ðtÞ is unbounded for t! �1. The constants c1 and c2 can be determined from the boundary conditions. The first

one is the boundedness of xu
1ðtÞ for, which require
cu
2 ¼

Z �1

t0

yu
1ðsÞgðxu; _xu; sÞds: ð2:8Þ
The analysis can be repeated analogously for the stable manifolds. In this case assumption requires the existence of
an orbit xsðtÞ forward-asymptotic to p0, that is, limt!1xsðtÞ ¼ p0, and it is just t! q0ðtÞ ¼ ½xsðtÞ; _xsðtÞ�T that parametri-
cally describes the stable manifold W sðp0Þ of p0 on the time interval t0 6 t <1. The solution of equation can be
expressed in the perturbative form (2.2), with a simple substitution of the apex ‘‘s’’ instead of ‘‘u’’. The remaining part
of the analysis is basically identical, up to this change of label. In particular, the correction terms xs

1ðtÞ are determined by
solving ‘‘the same’’ variational problems (2.8). A slight difference is that the vanishing of ys

1ðtÞ and the unboundedness
of ys

2ðtÞ for t ! þ1, instead of t ! �1, are used in above, hence we have
cs
2 ¼

Z 1

t0

ys
1ðsÞgðxs; _xs; sÞds: ð2:9Þ
The function cs
2 is conceptually and numerically distinct from cu

2. Finally, Melnikov function is defined as distance be-
tween the relevant stable and unstable manifolds. Thus, Mðt0Þ ¼ cs

2ðt0Þ � cu
2ðt0Þ, hence, we get
Mðt0Þ ¼
Z 1

�1
_xeðsÞgðxeðsÞ; _xeðsÞ; sþ t0Þds: ð2:10Þ
This is the classical Melnikov function (see [9,10,12]). However, in practice, the main difficulty involved in above anal-
ysis is to find the exact analytical solution for homogeneous part of (1.1). In this case, either, one can use numerical
method to find numerical solution to that equation, or one can find approximate analytical solution. We also note that
above analysis depend on e which must be small parameter for the perturbation analysis. In this work, we use the
Homotopy Analysis Method (HAM), for which, we do not require small parameter; hence, there is no restriction on
h. Furthermore, Melnikov type function can be obtained as a special case of our study.
3. Homotopy analysis method

Consider the nonlinear differential equation in general form
eN ½xðtÞ� ¼ 0; ð3:1Þ
where eN is a differential operator and xðtÞ is a solution. Applying the HAM to solve it, we first need to construct the
following family of equations:
ð1� qÞfL½hðt; qÞ � x0ðtÞ�g ¼ �hqeN ½hðt; qÞ�; ð3:2Þ
where L is a properly selected auxiliary linear operator satisfying
Lð0Þ ¼ 0; ð3:3Þ
�h 6¼ 0 is an auxiliary parameter, and x0ðtÞ is an initial approximation. Obviously, Eq. (3.2) gives
hðt; 0Þ ¼ x0ðtÞ; ð3:4Þ
se cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
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when q ¼ 0. Similarly, when q ¼ 1, Eq. (3.2) is the same as Eq. (3.1) so that we have
Plea
Soli
hðt; 1Þ ¼ xðtÞ: ð3:5Þ
Suppose that Eq. (3.2) has solution hðt; qÞ that converges for all 0 6 q 6 1 and for properly selected �h and the aux-
iliary linear operator L. Suppose further that hðt; qÞ is infinitely differentiable at q ¼ 0, that is
o
khðt; qÞ
oqk

����
q¼0

; k ¼ 1; 2; 3; . . . ð3:6Þ
exists. Thus, as q increases from 0 to 1, the solution hðt; qÞ of Eq. (3.2) varies continuously from the initial approxima-
tion x0ðtÞ to the solution xðtÞ of the original Eq. (3.1). Clearly, Eqs. (3.4) and (3.5) give an indirect relation between the
initial approximation x0ðtÞ and the general solution xðtÞ. A direct relationship between the two solutions is described as
follows. Consider the Maclaurin’s series of hðt; qÞ about q as
hðt; qÞ ¼ hðt; 0Þ þ
X1
k¼1

xkðtÞqk ; ð3:7Þ
where
xkðtÞ ¼
1

k!

okhðt; qÞ
oqk

����
q¼0

: ð3:8Þ
Assume that the series (3.7) converges at q ¼ 1. From Eqs. (3.4), (3.5) and (3.7), we have the relationship
xðtÞ ¼ x0ðtÞ þ
X1
k¼1

xkðtÞ: ð3:9Þ
Liao [1] provides a general approach to derive the governing equation of xmðtÞ. Recently, an equivalent approach is
given by Hayat et al. [5,6]. Substituting the series (3.7) into Eq. (3.2) and equating the coefficient of the like power of q,
we get the mth-order deformation equations
L½xmðtÞ � vmxm�1ðtÞ� ¼ �hRmðtÞ; ð3:10Þ
where
RmðtÞ ¼
1

ðm� 1Þ!
dm�1 eN ½hðt; qÞ�

dqm�1

�����
q¼0

ð3:11Þ
and
vk ¼
0; k 6 1;

1; k P 2:

�
ð3:12Þ
It is very important to emphasize that Eq. (3.10) is linear. If the first (m � 1)th-order approximations have been
obtained, then the right-hand side RmðtÞ will be obtained. So, using the selected initial approximation x0ðtÞ, we can
obtain x1ðtÞ; x2ðtÞ; x3ðtÞ; . . ., one after the other in order. Therefore, according to Eq. (3.9), we convert the original non-
linear problem into an infinite sequence of linear sub-problems governed by Eq. (3.10).

We now consider Eq. (1.1) for the following cases:

Case 1. Iff ðxÞ ¼ k2x, then we choose L operator as
LðxÞ ¼ d2x
dt2
� k2x ð3:13Þ
and hence the nonlinear equation will be
eN ½hðt; qÞ� ¼ €h� k2h� egðh; _h; tÞ; ð3:14Þ
where the dot denotes the derivatives with respect to the time t . Besides, we select
x0ðtÞ ¼
p0ekt; �1 < t 6 0;

p0e�kt; 0 6 t <1

�
ð3:15Þ
as the initial guess of xðtÞ, where p0 is a hyperbolic fixed point.
se cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
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Following the setting given by Eq. (3.2), one has the zero-order deformation equation:
Plea
Solit
ð1� qÞL½hðt; qÞ � x0ðtÞ� ¼ p�heN ½hðt; qÞ�:

Using (3.10), we have the kth-order deformation equation
L½xkðtÞ � vkxk�1ðtÞ� ¼ �hRkðtÞ; ð3:16Þ
where
R1 ¼ €x0ðtÞ � k2x0ðtÞ � egðx0ðtÞ; _x0ðtÞ; tÞ;

Rm ¼ €xm�1ðtÞ � k2xm�1ðtÞ �
e

ðm� 1Þ!
dm�1

dqm�1
g
Xþ1
k¼0

xkðtÞqk ;
Xþ1
k¼0

_xkðtÞqk ; t

 !( )�����
q¼0

; m P 2:
For k ¼ 1, we obtain
x1ðtÞ ¼ c1ekt þ c2e�kt � e
2k

ekt

Z t

t0

e�ksgðx0; _x0; sÞds� e�kt

Z t

t0

eksgðx0; _x0; sÞds

� �
: ð3:17Þ
This equation is exactly the same as that in (2.10), exactly same analysis and same condition at infinity as in previous
section, for t0 ¼ 0 will apply. Hence, we get
M1ðt0Þ ¼
Z 1

�1
xeðsÞgðxeðsÞ; _xeðsÞ; sÞds; ð3:18Þ
where
xeðsÞ ¼ eks; �1 < s 6 0;

e�ks; 0 6 s <1:

�

We note that this analysis does not depend on small parameter like e. If e is small enough, Eq. (3.17) gives accurate

information for homoclinic orbit, if there is no restriction on e, we go on calculating consecutive terms in Eq. (3.9) until
the last calculated term in small enough.

Case 2. If p0 is a hyperbolic fixed point of (1.1) , without loosing generality, we may assume that p0 ¼ 0 then we need to
choose L operator such as solution of LðxÞ must satisfy condition at infinity. Hence, we can choose L operator as
LðxÞ ¼ d2x
dt2
� k2x: ð3:19Þ
The nonlinear equation will be
eN ½hðt; qÞ� ¼ €h� f ðhÞ � egðh; _h; tÞ: ð3:20Þ
Following the setting given by Eq. (3.2), one has
ð1� qÞL½hðt; qÞ � x0ðtÞ� ¼ q�heN ½hðt; qÞ�: ð3:21Þ
According to (3.10), we have the kth-order deformation equation
L½xkðtÞ � vkxk�1ðtÞ� ¼ �hRkðtÞ; ð3:22Þ
where
RkðtÞ ¼
1

ðk � 1Þ!
dk�1 eN ½hðt; qÞ�

dqk�1

( )�����
q¼0

:

For k ¼ 1, we obtain
x1ðtÞ ¼ c1ekt þ c2e�kt � �h
2k

ekt

Z t

t0

e�ksð€x0 � f ðx0Þ � egðx0; _x0; sÞÞds� e�kt

Z t

t0

eksð€x0 � f ðx0Þ � egðx0; _x0; sÞÞds

� �
:

ð3:23Þ
It is obvious that the condition on e does not affect the calculation, whether is small or not, we need to calculate several
terms in Eq. (3.9) until the last calculated terms small enough which means we must obtain convergent series. In the
se cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
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following section, we give several nontrivial examples which show the Homotopy Analysis Method can be used to ob-
tain the homoclinic orbits.
4. Examples

To illustrate the features of the proposed approach to the homoclinic solutions of differential equations, in this sec-
tion we consider one preliminary example where computations can be done analytically. Two more interesting examples
will be discussed. We initially investigate the simplest case, i.e. the unforced and undamped Duffing equation
Plea
Soli
€x� xþ x3 ¼ 0: ð4:1Þ
This equation has the exact homoclinic solution xðtÞ ¼
ffiffiffi
2
p

sec hðtÞ. We use HAM to this problem, for limt!�1xðtÞ ¼ 0
and _xð0Þ ¼ 0 as in [15]. Now, we consider Eq. (4.1) subject to following boundary conditions:
_xð0Þ ¼ 0 and xð�1Þ ¼ 0: ð4:2Þ
Write xð0Þ ¼ a, where a is unknown and will be determined in the way described later. Substitute xðtÞ ¼ ayðtÞ into (4.1),
for t P 0, we get
€y � y þ cy3 ¼ 0 ð4:3Þ
subject to the initial/boundary conditions
yð0Þ ¼ 1; _yð0Þ ¼ 0; yðþ1Þ ¼ 0; ð4:4Þ
where c ¼ a2 is to be determined later.
Obviously, the homoclinic solution can be expressed by the set of base functions
yðtÞ ¼
Xþ1
m¼1

cme�mt; ð4:5Þ
where cm is a coefficient. This provides us with the so-called solution expression, as described in [1]. According to the
solution expression (4.5) and the initial/boundary conditions (4.4), it is straightforward to choose
y0ðtÞ ¼ 2e�t � e�2t ð4:6Þ
as the initial guess of yðtÞ, and besides to choose
Ly ¼ €y � y ð4:7Þ
as the auxiliary linear operator, which has the property
L½C1e�t þ C2et� ¼ 0 ð4:8Þ
for all C1 and C2. Let �h denote an auxiliary parameter, q 2 ½0; 1� an embedding parameter, respectively. For simplicity,
write
N ½Y ðt; qÞ;CðqÞ� ¼ o2Y ðt; qÞ
ot2

� Y ðt; qÞ þ CðqÞY 3ðt; qÞ: ð4:9Þ
Then, we construct the zeroth-order deformation equation
ð1� qÞL½Y ðt; qÞ � y0ðtÞ� ¼ q�hN ½Y ðt; qÞ;CðqÞ� ð4:10Þ
subject to the boundary conditions
Y ð0; qÞ ¼ 1; _Y ð0; qÞ ¼ 0; Y ðþ1; qÞ ¼ 0: ð4:11Þ
Obviously, we have
Y ðt; 0Þ ¼ y0ðtÞ ð4:12Þ
and
Y ðt; 1Þ ¼ yðtÞ; Cð1Þ ¼ c: ð4:13Þ
Expanding Y ðt; qÞ and CðqÞ into Maclaurin series of q, we have
se cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
tons & Fractals (2007), doi:10.1016/j.chaos.2007.04.021



F.T. Akyildiz et al. / Chaos, Solitons and Fractals xxx (2007) xxx–xxx 7

ARTICLE IN PRESS

Plea
Solit
Y ðt; qÞ ¼ y0ðtÞ þ
Xþ1
k¼1

ykðtÞqk ; ð4:14Þ

CðqÞ ¼ c0 þ
Xþ1
k¼1

ckqk ; ð4:15Þ
where
ykðtÞ ¼
1

k!

okY ðt; qÞ
oqk

����
q¼0

; ck ¼
1

k!

okCðqÞ
oqk

����
q¼0

:

Here, c0 ¼ Cð0Þ is an initial approximation of c and is unknown. Then, we have the relationships
yðtÞ ¼ y0ðtÞ þ
Xþ1
k¼1

ykðtÞ; ð4:16Þ

c ¼ c0 þ
Xþ1
k¼1

ck : ð4:17Þ
Substituting (4.14) and (4.15) into (4.10) and (4.11), and equating the like power of q, we have the mth-order deforma-
tion equation
L½ymðtÞ � vmym�1ðtÞ� ¼ �hRmðtÞ ð4:18Þ
subject to the boundary conditions
ymð0Þ ¼ 0; _ymð0Þ ¼ 0; ymðþ1Þ ¼ 0; ð4:19Þ
where
RmðtÞ ¼ €ym�1ðtÞ � ym�1ðtÞ þ
Xm�1

j¼0

ajðtÞbm�1�jðtÞ; ð4:20Þ

anðtÞ ¼
Xn

j¼0

cjyn�jðtÞ; ð4:21Þ

bnðtÞ ¼
Xn

j¼0

yjðtÞyn�jðtÞ: ð4:22Þ
When m ¼ 1, we have the first-order deformation equation
L½y1ðtÞ� ¼ �h½�3e�2t þ c0ð8e�3t � 12e�4t þ 6e�5t � e�6tÞ� ð4:23Þ
subject to the boundary conditions
y1ð0Þ ¼ 0; _y1ð0Þ ¼ 0; y1ðþ1Þ ¼ 0: ð4:24Þ
The above equation has the general solution
y1ðtÞ ¼ �h �e�2t þ c0 e�3t � 4

5
e�4t þ 1

4
e�5t � 1

35
e�6t

� �� �
þ C1e�t þ C2et:
Using y1ð0Þ ¼ 0; y1ðþ1Þ ¼ 0, we have C1 ¼ �h 1� 59c0

140

	 

and C2 ¼ 0. Then, enforcing _y1ð0Þ ¼ 0, we obtain
c0 ¼
35

16
: ð4:25Þ
The corresponding solution is
y1ðtÞ ¼ �h
5

64
e�t � e�2t þ 35

16
e�3t � 7

4
e�4t þ 35

64
e�5t � 1

16
e�6t

� �
: ð4:26Þ
Similarly, we can get c1; y2ðtÞ; c2; y3ðtÞ; . . . and so on.
It should be emphasized that our results contain the auxiliary parameter �h, which provides us with a simple way to

ensure the convergence of our series solutions. Note that c is a power series of �h. It is found that, at the 10th-order
approximation, c converges to the same value in the region �2 < �h < 0, as shown in Fig. 1 for the so-called c–�h curve.
This is indeed true: c converges to 2 when �h ¼ �1, as shown in Table 1.
se cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
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Fig. 1. The 10th-order approximation of c versus �h.

Table 1
c and x(0) by the HAM when �h ¼ �1

Order of approximation c x(0)

0 2.18750 1.47902
2 2.02646 1.42354
4 2.00563 1.41620
6 2.00134 1.41469
8 2.00034 1.41433

10 2.00017 1.41425
12 2.00002 1.41422
14 2.00001 1.41422
16 2.00000 1.41421
18 2.00000 1.41421
20 2.00000 1.41421
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Numerically, it is far more difficult to find homoclinic solution of the type of differential equation in (4.1). However,
by using the homotopy analysis method (HAM), one can find homoclinic solution (if there is one). Exact and HAM
series solution of the homoclinic orbit are given in Fig. 2. We notice that the difference between the exact and the
HAM solution is less than 10�10 for 16th-order approximation, are shown in Fig. 2.
Fig. 2. Comparison of the exact and HAM sereis solution xðtÞ versus t for Example 1.

Please cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
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Fig. 3. Comparison of the numerical and HAM series solutions xðtÞ versus t for Example 2 when d = 0.1, a = 0.8 and b = 1.

Table 2
c and x(0) by the HAM when �h ¼ �1

Order of approximation c x(0)

0 2.16032 1.46980
2 2.02048 1.42144
4 2.00458 1.41583
6 2.00144 1.41472
8 2.00074 1.41447

10 2.00057 1.41444
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Our second example is the well known Van Der Pol–Duffing equation [13]
Plea
Solit
€xþ dða� bx2Þ _x� xþ x3 ¼ 0; a; b > 0; 0 < d� 1: ð4:27Þ
Once again, our boundary conditions for the homoclinic solution are limt!�1xðtÞ ¼ 0 and _xð0Þ ¼ 0. The result can be
seen in Fig. 3 for the parametric values of d ¼ 0:1, a ¼ 0:8 and b ¼ 1. Again as in Example 1, we look at following
problem:
€xþ dða� bx2Þ _x� xþ x3 ¼ 0;

xð0Þ ¼ a; _xð0Þ ¼ 0 and xð1Þ ¼ 0
ð4:28Þ
and we change the dependent variable as xðtÞ ¼ ayðtÞ to obtain
€y þ dða� bcx2Þ _y � y þ cy3 ¼ 0; yð0Þ ¼ 1; _yð0Þ ¼ 0 and yð1Þ ¼ 0; ð4:29Þ
where c ¼ a2 is unknown. Similarly, when h ¼ �1, we have the results listed in Table 2.
Obviously, x(0) tends to

ffiffiffi
2
p

. We also carried out numerical computation for which initial conditions are taken from
our analytical solution of the homoclinic orbit, i.e. xð0Þ ¼

ffiffiffi
2
p

; _x 0ð Þ ¼ 0. The numerical solution agrees well with the
HAM result, as shown in Fig. 3.

Our last example is
€x� xþ 2x3 � e _x sin etð Þ ¼ 0
for details see Ref. [14]. Similarly, we get the HAM series solution of the homoclinic orbit, which agrees well with the
corresponding numerical result by means of Runge–Kutta’s method and the analytic value of x(0) and the initial con-
dition _xð0Þ ¼ 0, as shown in Fig. 4. This problem demonstrates that the homotopy analysis method is effective in solving
the infinite interval problems. In Figs. 2–4, we considered the interval [0,1); however, the analysis can be extended
easily to the interval (�1, 0] as well. Another main advantage of HAM method is that it gives the analytical solution.
se cite this article in press as: Akyildiz FT et al., A new method for homoclinic solutions of ordinary ..., Chaos,
ons & Fractals (2007), doi:10.1016/j.chaos.2007.04.021



Fig. 4. Comparison of the numerical and HAM series solution xðtÞ versus t for Example 3 when e = 0.1.
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5. Conclusions

In this paper, we consider the homoclinic solutions of ordinary differential equations. We first review the Melnikov
analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a
hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method [1–6], we obtain homoclinic
solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show
that the Melnikov type function can be obtained as a special case of the homotopy analysis method. Finally, homoclinic
solutions are obtained (for nontrivial examples) analytically by HAM, and are presented through graphs.

This work verifies the validity and the potential of the homotopy analysis method for investigating homoclinic orbits
of nonlinear oscillation systems. This analytic approach can be easily extended to give heteroclinic solutions of a non-
linear differential equation.
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