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SUMMARY 

In this paper the high-order formulations described by Liao (In?. j .  numer: methodspuids, 15,595412 (1992)) are 
proved to be stable for viscous flow under high Reynolds number. As an example, results for shear-dnven flow in a 
square cavity at Reynolds numbers up to 10,000 are given. 
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1. INTRODUCTION 

Many researchers are now applying the boundary element method (BEM) to solve non-linear problems 
such as the Navier-Stokes equations.'-' For 2D viscous flow, Rodtlguez-Prada et al.' described a 
method for the 2D Navier-Stokes equations which is based on a set of fundamental solutions providing 
a complete coupling between the streamfunction and vorticity equations so that iteration is not needed 
in the case Re = 0. The non-linear terms are considered as inhomogeneities and treated by simple direct 
iteration. However, this numerical scheme is unstable in the case Re > 300 for shear-driven flow in a 
square cavity.' 

Applying the homotopy technique together with Taylor series theory, Liao" described high-order 
streamfunction-vorticity BEM formulations of the 2D steady state Navier-Stokes equations. His first- 
order formulations are the same as those described in Reference 7 and also do not give stable results in 
the case Re > 300 for cavity flow. However, convergent results at Re up to 2000 for shear-driven cavity 
flow have been obtained by means of his second-order formulations." 

In this paper we will go along the same way as described in Reference 10. We will prove that the 
high-order formulations given in Reference 10 are still stable at high Reynolds numbers up to 10,000 
for shear-driven cavity flow. 

2. MAIN MATHEMATICAL FORMULATIONS 

The two-dimensional Navier-Stokes equations in terms of the streamfunction J/ and vorticity w are 

v2J/ + w = 0, (x ,y )  E 52, (2) 
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with boundary conditions 

an (4) 

where 
expressed in dimensionless form. Re is the Reynolds number. 

denotes the domain of the flow and r denotes the boundary. All the above equations are 

In Reference 10 Liao derived the high-order iterative formulations 

where $pl(x,  y )  and wpl(x ,  y )  ( m  2 l), called mfh-order deformation derivatives, satisfy the equations 

(7) v 2 ~ r 1 ( x , ~ )  = X m ( X 7  JJ> - gmV2wk(x, y), ( x ,  y )  E a, 

Here 

1 when m = 1, 
. m y (  0 when m z 1,  

and for any (x.y) E Iz we have 

where $Ax, y )  and WAX, y )  are approximations of the streamfunction and vorticity respectively after k 
time iterations (k = 0, 1, 2, , . .). Note that for any value of m (m 2 l), .um(x, y )  is a known function. 
Thus, as mentioned in References 7 and 10, equations ( 7 x 1 0 )  can be solved by the BEM. The 
corresponding BEM formulations are described in detail in Reference 10. 
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3. NUMERICAL RESULTS 

As mentioned in Reference 10, in the case M =  1 the formulations described above will give the same 
BEM expressions as those given in Reference 7, which are unstable at Re 7 300 for shear-driven cavity 
flow. However, the second-order formulations can give convergent results at Re up to 2000. Naturally, 
we would like to know whether or not the high-order formulations can give convergent results at higher 
Re. 

The high-order iterative formulations (5) and (6) and the corresponding equations (7H10) for 
deformation derivatives I,$“’(x,y) and o p l ( x , y )  ( m  2 1) are the key to the proposed method. 
Obviously equations (7) and (8) are linear and #,,,(x, y) (rn 2 1) are known functions, so that either the 
BEM or the finite difference method (FDM) can be easily applied to solve these equations. 

In Reference 10 the BEM is used with a rather coarse numerical grid for the corresponding 2D 
integral. However, a very fine numerical grid is necessary for high-Re flow. Thus, for the sake of 
computational efficiency, we use in this paper the FDM to solve equations (7H10). (The 
computational efficiency is especially important for us because we use a PC (COMPAQ P4/50, 
8 MB RAM) as a computational tool.) Multigrid are used to accelerate the iterations. 
The nine-point restriction operator and the nine-point prolongation operator are applied for the 
multigrid method. Second-order-accurate central finite difference approximations are used for the first- 
and second-order derivatives of equations (7) and (8). The second-order approximation formulation for 
the vorticity on the boundary r, as described in Reference 11, is used. 

We define 

and 

as the convergence criteria, where N x N is the grid for shear-driven cavity flow. Similarly as in 
Reference 11, we use a 129 x 129 grid for Re < 3200 but a 257 x 257 grid for higher Reynolds 
numbers. As mentioned in Reference 10, the radius of convergence of the Taylor series ( 5 )  and (6) 
reduces as Re increases. Thus we select a value of Ap as the step spacing and then find the best value of 
p ,  which is some multiple of Ap. 

Using the FDM and the same values of Ap (at the corresponding Re) as those in Reference 10, we 
find that the first-order formulations (M= 1) are stable at Re < 300 but unstable at Re 2 400. 
However, similarly as in Reference 10, the second-order formulations ( M =  2) are stable even at Re up 
to 10,000. The history of the errors during the iterative algorithm using the first- and second-order 
formulations at Re = 400, 1000 and 3200 (127 x 127 grid) is shown in Figure 1. This result seems to 
imply that from the viewpoint of iteration convergence, whether or not the high-order formulations are 
applied is much more important than whether the BEM or FDM is selected to solve the corresponding 
linear equations (7H10). Note that these formulations are also suited to the BEM, as described in 
Reference 10. Thus we can be reasonably confident that we would also obtain convergent results in the 
case Re < 10,000 by applying the BEM. 
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Figure I .  History of errors during iterative algorithm: curve 1, Re = 400, M= 1; curve 2, Re = 400, M =  2 ;  curve 3 ,  Re = 1000, 
M= I ;  curve4, R e = 1 0 0 0 .  M = 2 ;  curve 5 ,  R e = 3 2 0 0 ,  M =  1; curve 6, R e = 3 2 0 0 ,  M = 2 .  RMS=J{[(RMS,J2+(RMS+)2]/2) 

All results described below are obtained by the second-order formulations (M= 2). The values of 
Ap, the corresponding iteration numbers and the root-mean-square errors RMS# and RMS, at 
Re = 400, 1000, 3200, 5000, 7500 and 10,000 are given in Table I. The results for the streamfunction 
$,,c and vorticity wV,= at the vorticity centre (xC, yc) are given in Table 11. The contours of the 
streamfunction $ and vorticity w at Re=3200, 7500 and 10,000 are shown in Figures 2-7 
respectively. The velocity distributions of u at x = 0.5 and v at y = 0.5 are shown in Figures 8 and 9 
respectively, where the symbols denote the results given in Reference 1 1 .  All our results agree well 
with those of Ghia et al.“ 

It should be emphasized that for shear-driven cavity flow the high-order iterative formulations (5) 
and (6) can give convergent results at Re up to 10,000. This means that the formulations ( 5 )  and (6) are 
stable at high Reynolds numbers. In this paper, for the sake of computational efficiency, we use the 
FDM to solve the linear equations (7H10). However, as mentioned before, whether the BEM or FDM 

Table I. Parameters, number of iterations and errors of corresponding results 

Re AP 
400 0.200 
1000 0.050 
3200 0.030 
5000 0.020 
7500 0,010 
10000 0.010 

Number of iterations W S ! b  RMSU 

161 9.7 x I O - ~  5.1 x I O - ~  
779 8.7 I O - ~  1.0 lo-; 
1 I96 2.7 x lo-’ 5.0 x 10- 
1366 2.9 x lo-’ 5.0 x lo-’ 
2695 1.9 x 5.5  x lo-’ 
3744 2.5 x 5.7 x lo-* 
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Table 11. Comparison of present results for primary vortex with those of Ghia et ui." 

5 

~~ 

400 - 0.1 130 2.28 I9 (0.5547.0.6093) - 0.1 1391 2.2947 (0.5547.0.6055) 
1000 - 0.1 160 2.0234 (0.5313,0.5625) - 0.1 1793 2.0497 (0.5313,0.5625) 
3200 - 0.1 168 1.879 1 (0.5 156,03469) - 0.12038 1.9886 (0.5 165,04469) 
5000 - 0. I186 1.9375 (0.51 17,0,5430) - 0.11897 1.8602 (0.51 17,0.5352) 
7500 - 0.1201 1.9630 (0.5078,0.5469) - 0. I 1998 1.8799 (0.5 1 17,0.5322) 
10000 - 0.1201 1.9426 (0.5078,0.5430) - 0.1 1973 1-8808 (0.5 1 17,04333) 

Figure 2. Contours of streamfunction $ at Re= 3200 

Figure 3.  Contours of vorticity w at Re = 3200 
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Figure 4. Contours of streamfunction 1(1 at Re = 7500 

is applied to solve these equations seems not very important for the convergence of the proposed 
method. Thus the present work should give us confidence that these formulations might also provide a 
kind of stable BEM scheme for 2D steady state viscous flow at high Reynolds number. We will attempt 
to prove this directly as soon as we have the chance to use a supercomputer. 

4. CONCLUSIONS 

In this paper we have shown that the high-order iterative formulations described in Reference 10 are 
stable and can give convergent results for 2D viscous flows at high Reynolds numbers. As an example, 

Figure 5. Contours of vorticity o at Re = 7500 
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Figure 6. Contouls of streamfunction @ at Re= 10,000 

convergent results for 2D shear-dnven cavity flow at Re up to 10,000 are obtained. Note that these 
formulations are also suited to the BEM, but, as proved in this paper, whether the BEM or FDM is used 
to solve the corresponding linear equations is not important for iteration convergence. Thus we have 
reason to believe that these high-order formulations might give a kind of stable BEM scheme for 
viscous flow at high Reynolds number. However, this must be proved by directly applying the BEM 
and we will do so as soon as possible. 

Re = 10000 GRID =257 X 257 
J n 

- 
Figure 7. Contours of vorticity w at Re = 10,000 
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Figure 8. Velocity distributions of u at x = 0.5 
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Figure 9. Velocity distributions of v at y = 0.5 
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