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GENERAL BOUNDARY-ELEMENT METHOD
FOR UNSTEADY NONLINEAR HEAT
TRANSFER PROBLEMS

Shi-Jun Liao and Allen T. Chwang
Department of Mechanical Engineering, The University of Hong Kong,
Pokfulam Road, Hong Kong

The general boundary-element method (BEM) for strongly nonlinear problems proposed in
[1-3] is further applied to solve a two-dimensional (2D), unsteady, nonlinear heat transfer
problem in the time domain, governed by the parabolic heat conduction equation with
temperature-dependent thermal conductivity coefficients that are different in the x and y
directions. This article shows that the general BEM is valid to solve even those nonlinear
unsteady heat transfer problems whose governing equations do not contain any linear terms
in the spatial derivatives. This demonstrates the validity and the great potential of the
general BEM.

INTRODUCTION

Let us consider a 2D, unsteady, nonlinear heat transfer problem with inho-
mogeneous materials in the time domain, governed by

0 o0 0 00 o0
— k(0 — |+ — k2(9)a_ + S(x,y,0)— —=0 (x,9)e Q,t>0
y

Ox Ox Oy ot
(1)
with boundary conditions
0= g, (x, p, 1) (x,el,t>0
00 (2)
—=g(x 0 (x, e [, t>0
Oon
and the initial condition
0(x, »,0) = go(x, ) (x,y)e Q (3)

where O(x, y, t) denotes the temperature distribution, k,(6) and k,(0) are thermal
conductivity coefficients in the x and y directions, S(x, y, 8) is the heat source
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226 S.-J. LIAO AND A. T. CHWANG

NOMENCLATURE

k thermal conductivity coefficient 0" temperature distribution at the nth
ki, k, thermal conductivity coefficients in the time step

x and y directions 0!; temperature distribution at the nth
P auxiliary variable time step at position (i Ax, jAy)
S heat source term (0] a kind of homotopy
t time P convergence radius
x, ¥y spatial coordinates ® auxiliary function defined by Eq. (6)
Y thermal absorptivity [0 fundamental solution
r boundary of the spatial domain Q Q spatial domain of the temperature
0 temperature distribution distribution

term that is also dependent on temperature O(x, y, ), Q is the domain of the
temperature distribution, ['= I'; U I', denotes the boundary of the domain ), and
¢t denotes time. All variables in Egs. (1)-(3) are nondimensional.

If k,(0)= k,(6)= 1and S(x, y,0) = 0, Eq. (1) is a linear diffusion problem
that can be solved by the classical boundary—element method (BEM) based on
time-dependent fundamental solutions [4,5] or the Laplace transformation [6].
When S(x, y,0)= 0, k(68)= k,(68) = k(0) and the temperature distribution 0 is
independent of 7, Eq. (1) becomes a steady-state one,

0 00
+ — k() —|=0 (x,9)e Q,t>0 (4)

i k(6) ﬁ
Jy Jy

Ox Ox

which can be rewritten by the Kirchhoff transformation [7] as

Vzgo(x, y)=0 (x,9)e Q,t>0 (5)

where

0
o(x,y) = je k(0)do (6)

Equation (5) can also be solved by the classical BEM. However, when k,(0) = k,(60)
and the process is unsteady, the above-mentioned techniques based on the Kirch-
hoff transformation or the time-dependent fundamental solution are invalid. In
this case, one can try to move all the nonlinear terms of Eq. (1) to the right-hand
side and then find the fundamental solution of the linear operator still remaining
on the left-hand side. This kind of BEM approach implies that both the linear
operator and the corresponding fundamental solution are very important and
absolutely necessary for the classical BEM. However, there exists a possibility that
nothing is left on the left-hand side after moving all the nonlinear terms to the
right-hand side of the equation. For example, when the thermal conductivity
coefficients k,(0) and k,(0) are not only dependent on temperature 6 but also
different in the x and y directions, say,

k(0) = exp(a,0) k,(0) = exp(a,0) (o, = ay) (7)
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then nothing is left on the left-hand side of Eq. (1) after moving all nonlinear terms
and the heat source term S(x, y, 0) to the right-hand side. In this case, the classical
BEM for nonlinear problems does not work at all. Therefore, it is necessary to
develop a more general BEM that works well even in the above-mentioned case.

Liao [1] and Liao and Chwang [2] proposed a general BEM for nonlinear
problems. This general BEM was applied by Liao and Chwang [3] to solve a 2D
steady nonlinear heat transfer problem with inhomogeneous materials, governed by
the dimensionless equation

0 09
— |k, (0) —

ﬁx ﬁx + S( X, y) =0 (X, y) c Q (8)

'|'i /’C(Q)ﬁ
oyl oy

It should be noted that when
k,(0) = exp(a,0) k,(0) = exp(a,0) (a2 a,)

nothing is left on the left-hand side of Eq. (8) after moving all the nonlinear terms
and the known heat source term S(x, y) to its right-hand side. Even under this
circumstance, the general BEM was successfully applied to solve the nonlinear
heat transfer problem. In this article, we further extend the approach of Liao
and Chwang [2] to solve the above-mentioned unsteady nonlinear (parabolic)
heat transfer problem with inhomogeneous materials and show its validity by an
example.

FORMULATION OF THE GENERAL BEM

Let At denote the time step and 0" denote O(x, y, n At). At the nth time
step t=n At (n> 1), Eq. (1) can be approximately rewritten as

ik(@”) n+ik(9") n+5( 0") 9"—_9"_1_0
ax 1 ax ay 2 ay X, y: Al‘ =
(x. ) e Q 9)
with boundary conditions
0"=g(x,y,nA) (x,peT (10)
00"
= g (x », A0 (x,»)e [, (11)
on

Here, we use the fully implicit expression of Eq. (1) in the time domain. Note that
the temperature distribution 0"~ '= 0(x, y,n Ar— Ar) is known when we solve
Egs. (9)=(11) at the nth (n > 1) time step. For simplicity, we define a nonlinear
operator

n n—1

At

n

0
+_
Jy

k,(0") + SCx, y,0") —

ny — i[ n
A(Q )_ ax kl(e )

ox Oy

(12)
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Note that, at each time step, if we consider

n n—1

SCx, y,0") — A,

as a new heat source term, the nonlinear boundary-value problem governed by
Egs. (9)—(11) can be seen as a steady-state heat transfer problem that can be solved
successfully by means of the general BEM [3].

Following Liao and Chwang [3], we first construct a family of partial differen-
tial equations for O(x, y; p) as

(1= pIV[O(x, y; p) — 0,(x, ] = —pAlO(x, y; p)]
(x,y) e Q pe [0,1]

(13)

with boundary conditions
OCx, ys p) = pgi(x, y,n A+ (1= p)Oy(x,»)  (x,)e I, pe [0,1] (14)

o00(x, y; p)

00,
= pg,(x,y,nAt)+ (1 — p)_0 (x,y)e Iy, pe [0,1] (15)
on Oon

where p is an embedding parameter and 0,(x, y) is an initial approximation of the
temperature distribution 0" at the nth time step. Note that O(x, y; p) is also a
function of the embedding parameter p.

When p = 0, we obtain from Egs. (13)-(15) that

V20O(x, y;0) = VZQO(X, y) (x,y)e Q (16)

with boundary conditions

OCx, y;0) = 6,(x, y) (x,») e I, (17)
00(x, y:0)  00,(x, y)
o = o (x,»e T, (18)
whose solution is obviously
O(x, y;0)= 6,(x, y) (19)

When p = 1, we obtain from Egs. (13) and (15) that

A ® 1]——a[k®—ﬁ®+—ak®—ﬁ®
(% D= ox 1(0) ox oy 2(0) oy
N o 2-o _
S(xyyy ) Al‘ -

(x,79)e Q, p=1 (20)
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with boundary conditions

O(x, y;1)=g,(x,y,nA?t) (x, eI, 21D

o0(x, y; 1)

= g(x,y.nAp) (x,y)e I, (22)

On
By comparing Eqs. (20)—(22) with Egs. (9)-(11), ®(x, y,1) is obviously the solution
0",

O(x, y;1)=0"= 0(x, y,nAt) (23)

Therefore, Eqgs. (13)—(15) form a family of equations in parameter p € [0, 1], whose
solution at p = 0 is equal to the initial approximation 6,(x, y) and at p = 1 is the
temperature distribution @(x, y,n At) at the nth time step. The process of the
continuous change of the imbedding parameter p from 0 to 1 is just the process of
the continuous variation of solution @(x, y; p) from 0,(x, y) to 8(x, y, n At). This
kind of continuous variation is called deformation in topology, ®(x, y; p) is called
homotopy, 0,(x, y) and 0" = O(x, y,n At) are homotopic. Notice that this kind of
continuous deformation is completely governed by Eqs. (13)—(15), which are called
the zeroth-order deformation equations.

Expanding ®(x, y; p) at p = 0 by the Taylor formula and using Eq. (19), we
obtain

m!

@ Qm (x’ y)
OCx, y;p)=0(x,p,00+ ¥ lo—lpm

m=1

0 9 m (X, y)
= 6,(x., )+ X l—o lp”’ (24)

!
m=1 m:

where 6" '(x, y) (m > 1), called the mth-order deformation derivative at p = 0, is
defined by

0" O(x, y; p)

o (m> 1) (25)

0," ' (x, y) =

=
I
=

Assume that the convergence radius of series (24) is not less than 1. Then, at
p = 1, we obtain from Egs. (23) and (24) that

© Qom (X, y)
0(x,y,nA)= Oy(x, )+ ¥ —— (26)

|
m=1 m:

which gives a relationship between the initial approximation 6,(x, y) and the
unknown temperature distribution 0" = 0(x, y,n A¢) at the nth time step. In



230 S.-J. LIAO AND A. T. CHWANG

general, the temperature distribution 0"~ '= 0(x, y,n At— At) is used as the
initial approximation 0,(x, y) at the nth time step. Therefore, Eq. (26) gives, in
fact, a relationship between O(x, y,n At— At) and O(x, y, n At).

Differentiating the zeroth-order deformation equations (13)-(15) m times
with respect to p and then setting p = 0, we obtain the following mth-order

deformation equation at p = 0:
V0, (x, y) = R, (x, y) m>1,(x,y)e Q (27)

with boundary conditions

0," = lg(x, p,nAt) — 0,(x, p)16,, (x,y) e I, (28)
06, 00,(x, y)
- = I:gz(%%”:At)_ : ]51,” (X, y)E FZ (29)
on 0
where §,,, is the Kronecker delta and
R,(x, )= —A4(6,) (30)

d"'4[0O(x, y; p)]

R,(x, )= m|:V290m_1 — l (m> 2) (31)
p=0

dpm—l
Moreover, we have by Eq. (12) that
d4O(x, y; p)] . 0°0, e 00,
dp p=0_ 100 ox* 2o oy’

) 0y \N 80 \ | -,
+k1(90)(g)+ kz(eo)(a—y) 0,

b 2x000 (Z2 NV s 2oy (22 V2
1€ ")(ax) Ox 2( 0)(ay) Oy

201 201

0 0
k6 ox? * k() oy’
OS(x, y, 6,) 1
t(—————p 32
( 00 At)90 (32)

and so on.

Note that the mth-order deformation equation (27) with the corresponding
boundary conditions (28) and (29) are linear with respect to the mth-order
deformation derivative 6,"'(x, y) (m > 1). The linear equation (27) contains the
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well-known Laplace operator, whose fundamental solution is familiar to us so that
it can be easily solved by the classical BEM. Precisely speaking, one can solve the
integral equation

$

r

89}11
(w a(; B _90”1 )dr ” @@, )R, (x, y) dxdy (m> 1) (43,

=(&.ne QUr=(x,p)e Q

to determine the unknown values of 6,”'(x, y) on I', and 460," (x, y)/Jn on I,
where

1
o' ,r)= — ;ln\/(x— '+ (y—n)’ (34)

is the fundamental solution of the 2D Laplace operator, and ¢ denotes the
exterior of domain () excluding its boundary I'= I', U I',. The linear equation
(33) can easily be solved by some well-known techniques of the BEM. For example,
the boundary can be divided into Np equal parts and within each boundary
element the unknown [0, '(x, y)/ dnl (m > 1) can be linearly distributed and (33)
is satisfied at end points of each element. For the domain integral, the domain can
be divided into Ngp X Ng equal subdomains and the four-point Gauss-integral
formula can be used. For more details about the element technology and numerical
integration technology, refer to Brebbia et al. [8]. Note that the left-hand matrix
related to Eq. (33) is the same for all time steps, so its inverse matrix can be used
in each iteration at every time step (n > 1). After obtaining the unknown values of
0," (x, y)on I', and 96," (x, y)/ On (m > 1) on I'|, we have at point (&, 1) e QU
I' that

9m — aeom @9 m dl"
(£, )6, (g,m—g;(w - =0, )
—”Qco(r’,r)Rm(x, y) dxdy (35)

= (&, n)e QUTI r=(x,)e Q, m> 1

where

L1 ifEme Q
e(e.m = {f it(g,meTl (36)

Note that only a finite number of deformation derivatives 6,"'(x, y) (m > 1)
can be obtained. If the convergence radius p of the Taylor series (24) is greater
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than or equal to 1, we can use

M Qm(/’ )
O0(x, p,n A~ Gy(x,»)+ 3 e 37)

|
m=1 m:

to obtain a new approximation better than 6,(x, y), where M denotes the order of
approximation. However, the convergence radius p of series (24) may be less than
1, so that (26) does not hold. Even in this case, ®(x, y; ) (0 < A < p) is in most
cases still better than the initial approximation 6,(x, y), so we can use the iterative
formula

M A{meom (X, y)
Os (x, 3,0 AD)=0,(x,y,n A+ ¥ ——— (k=0,1,2,3,...)

|
m=1 m:

(38)

where A (0 < A < p) is treated as an iterative parameter and M is the order of
approximation. We call Eq. (38) the Mth-order iterative formula. At the beginning
of each iteration process, we simply use the known temperature distribution
0" '= 0(x, y,n A\t— Ar) as the initial approximation for 0" = O(x, y,n Ar).
However, we should keep in mind that 6,(x, y) appearing in all of the above
expressions should be set new values before each new iteration.

By means of the general BEM mentioned above, we can use the initial
condition O(x, y,0) = g,(x, y) as an initial approximation to obtain the tempera-
ture distribution O(x, y, At) at the first time step. Then, in a similar way, we can
further use O(x, y, At) to obtain the temperature distribution 6(x, y,2 A¢) at the
second time step, and so on. In this way, we can obtain the solution of the original
equations (1)—(3) in the whole time domain.

Finally, we mention that, in Eq. (33), R,, contains a term V’6,"~
be converted to the boundaries by using the BEM. In fact, the term R,, is a known
function so that it can be converted to the boundaries if the dual reciprocity BEM
[7,9,10] is applied. We emphasize that the left-hand matrix related to Eq. (33) is
the same for all time steps, so its inverse matrix can be used in each iteration at
every time step (n > 1).

' which can

NUMERICAL EXAMPLES

In order to show the validity of the above-mentioned general BEM formula-
tion for unsteady, nonlinear heat transfer problems with inhomogeneous materials,
we consider a 2D microwave heating problem. Generally, a microwave heating
process is quite complicated: it contains the absorption and diffusion of heat,
governed by a forced heat equation, and also the propagation and decay of the
microwave radiation through a given material, governed by the Maxwell equation.



BEM FOR NONLINEAR HEAT TRANSFER PROBLEMS 233

The absorption and diffusion of heat is modeled by a nondimensional equation,

o0
+ y(OIE - —=0 (39)

0 00
— | k(8) — o

Ox Ox

o
oy 2( oy

where O denotes temperature, k,(6) and k,(6) are thermal conductivity coeffi-
cients of the material in the x and y directions, respectively, y(60) is the thermal
absorptivity of the material, and | E| is the amplitude of the electric field. Equation
(39) is generally coupled with the Maxwell equation because of the temperature
dependence of material properties such as electric conductivity, magnetic perme-
ability, and electric permeability. However, if these material properties are as-
sumed constant, the amplitude of the electric field is exponentially dependent on
the spatial variables, i.e.,

X
|El= exp (— 7) (40)

for the decay from an incident boundary at x= 0, where ¢ is the decay constant.
Here, the electric field has been assumed to decay exponentially in the x direction,
whereas it is uniform in the y direction. Moreover, for many materials, the thermal
absorptivity y(6) has a power-law dependence on temperature 6, say,

y(0) = po” (41)

Hill et al. [11-13] gave some examples of materials for which this power-law form
of the thermal absorptivity is valid. For these materials, the so-called thermal
runaway is possible if v> 1. Then, substituting Egs. (40) and (41) into (39) leads to
a simplified model equation,

00
+ BOY exp(—gx) — Y 0 (42)

+ —

< k(e)ﬁ
1 ﬁy

Ox Ox

k (9)ﬁ
2 ﬁy

The corresponding boundary conditions may be of essential, natural, or mixed type.
For more details, refer to [14—16]. For simplicity, we consider in the present paper
a microwave heating problem of a 2D unit plate made of an inhomogeneous
material. The corresponding boundary conditions are 8= 1 on four sides of the
unit plate and the initial condition is 6(x, y,0) = 1. For simplicity, we consider
only the case of k,(6) = exp(af) and k,(6) = 1.

By Egs. (13)-(15), the corresponding zeroth-order deformation equation for
the temperature distribution 8" = 0(x, y,n At) is

(1= p)V?O(x, y; p) = Oy(x, »)] = —pA[O(x, y; p)]

(x,») e [0,1]x [0,1], pe [0,1]

(43)

with boundary condition

OCx,y;p)=p+ (1= p)Oy(x,y) (x,e ', pel0,1] (44)
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where the nonlinear operator A(0) is defined by

’ ’ o0 | 00 |
A(B®) = k,(0) Py + k,(0) P + k}(@)[? + k’z(G))[a—y]
+ BOVexp(—ex) — o- o
At
(x,») e [0,1]x [0,1], pe [0,1] (45)

According to Eqgs. (27)-(29), 6;"'(x, y) (m > 1) are governed by
V290m(x, y) = ﬁnl(,v, ¥) (x,y)e [0,1]x [0,1], m> 1 (46)
with the boundary condition
0" (x, )= 61,1 = O(x, ] (x,»)e T (47)

where O, is the Kronecker delta and

1m

ﬁl(,v, y) = —A~(90) (48)

d""A1OCx, y; p)l
dpm—l

ﬁnl(,v, y)=m VZQO'”_I — (m> 2) (49)

=
I
=

The linear equation (46) with linear boundary condition (47) can easily be
solved by the classical BEM. Note that the boundary now has four sides, each of
which is divided into N equal parts. At each corner, two very close points, each
belonging to a different boundary, are used to deal with the discontinuation.
Within each boundary element, the unknown [30,"'(x, y)/ On] (m > 1) is linearly
distributed and boundary condition (47) is satisfied at two end points of each
element so that we have all together 4(Np + 1) unknowns on the four sides of the
unit plate. For the domain integral, the domain [0,1]X [0,1] is divided into
Nq X Ng equal subdomains and the four-point Gauss-integral formula is used. We
emphasize once again that the left-hand matrix related to Eq. (33) is the same for
all time steps, so its inverse matrix can be used in each iteration at every time step
(n> 1).

By Eq. (38), we can obtain iterative formulas at different orders. Our
numerical calculations indicate that the higher the order of the iterative formulas,
the faster the corresponding iteration process converges, as shown in Figure 1. The
same trend was reported by Liao and Chwang [2] and will not be discussed further.
When the first-order iterative formula

O (x,y,nAt)= 0,(x, p,n At) + A0,/ (x, ) (50)
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71 i Al

mnmllf - ‘4}1 5‘1 éIf”
NUMBER OF {TERATION

Figure 1. RMS errors A versus the number of iterations
for a= 025, f= 14.1, e=2, and v=2 (Ar= 0.01,
A= 0.1, Np= Ng = 20): curve 1, the first-order formula
(M= 1); curve 2, the second-order formula (M = 2).

is used and the value of A is properly selected, the iteration converges quickly, as
shown in Figure 1 for the case k(0) = exp(6/4), k,(6)= 1, = 14.1, £= 2, and
v= 2, where Np = 20, No= 20, A= 0.1, and At= 0.01.

According to Eq. (45), ATQ(X,-, Vi1 A1)l denotes the residual error of the
governing equation (42) at point x,= iAx, y/-=jAy and the nth time step.
Clearly, the smaller the root mean square of the residual error,

No Ng )
s 3 | 4l6cx. .0 00|

i=0 j=0

(Ng+ 1)’

the better the approximation 8(x;, y;, n A1) is. Hence, the convergence criterion is
given by

No  No ,
> ¥ |A~[9(x,-,y/-,nAt)]|
A=\ > <107* (51)
(Not+ 1)

where the nonlinear operator A4 is defined by Eq. (45).

Without loss of generality, we consider in this article only four cases, that is,
a= 0.25, 0.50, 0.75, and 1.0 with v= 2 and &= 2. Here, we use A= 0.01,
At= 0.01, No= 20, Npr= 20, and the first-order iterative formula (50) (M = 1).
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In each case, the temperature distributions of the unit plate in the time domain
with different values of 8 can be solved by the general BEM formulation. If the
value of B is small enough, O(x, y, n At) tends to a steady-state solution as n is
large enough. However, “thermal runaway” occurs as [ is greater than a critical
value, denoted by f,. In engineering, it is very important to predict the circum-
stance under which thermal runaway occurs. Using the general BEM formulation
for unsteady nonlinear heat transfer problems, we successfully determine the
critical value f, for the occurrence of thermal runaway, as listed in Table 1, where
O...x is the maximum temperature corresponding to the critical value f3.. Thermal
runaway occurs when [ > f3.. The corresponding temperature distributions of a
unit plate under microwave heating with different critical values of [, are shown in
Figures 2-7.

If thermal runaway does not occur, the temperature distribution 0(x, y, n At)
tends to a steady-state solution that can also be obtained by the general BEM
formulation given by Liao and Chwang [3]. On the other hand, if thermal runaway
occurs, the steady-state equation cannot be obtained, because the corresponding
iteration diverges.

For comparison, we also solve Eq. (42) by means of the finite-difference
method (FDM). By writing 6,";= 0(iAx, jAy,n A1), where Ax= Ay=1/N and
At denote the spatial and time steps, respectively, the governing equation (42) can
be discretized as

0L, .— 20"+ 0", . 6" ., —26".+06"_
kl(ei'j/-) + 1,/ ,/2 1,/ + k2(9,-'f,-) ,jt 1 ,/2 ,Jj— 1
(A x) (Ay)
04 | i 9,"1—1/ ? 9i”/+1_ 91'”/'—1 ’
+ k(0" )| ———| + k,(0", ; )
1(9"/)[ 2A x 2(9"/) 2Ay

+ B0 exp(—eiAx) = (1<i,j<s N—1)

At
and

0y,= 0y, = 0"y=06"y=1 (0< i< N)

Table 1. Values of 8, and 6,,, with &= 2 and v= 2 for different values of o

max

Present BEM approach FDM approach
a ﬂ[‘ Qmux ﬂ[‘ Qm ax
0.25 14.1 2.53 14.1 2.54
0.50 33.0 8.33 33.1 8.34
0.75 55.5 5.93 55.4 591
1.00 84.0 4.69 84.2 4.71
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Figure 2. Temperature distribution of a unit plate under microwave heating for a= 0.25 and = 14.1
(e= 2, v= 2) with k,(0) = exp(6/4) and k,(0) = 1.
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Figure 3. Temperature distribution of a unit plate under microwave heating for a= 0.25 and = 14.1
(e= 2, v= 2) with k,(0) = exp(0/4) and k,(0) = 1.
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Figure 6. Temperature distribution of a unit plate under microwave heating for o= 0.75 and = 55.5
(e= 2, v=2) with k,(0) = exp(36/4) and k,(0) = 1.

We solve the above set of nonlinear algebraic equations by the iteration technique,
and the result 9,’771 at the (n — 1)th time step is used as the initial approximation.
The results given by the FDM for the case of = 14.1, e= 2, v= 2, Ax=Ay=
0.025, At= 0.01, and A= 0.1 are shown in Figure 8. Comparing Figure 8 with
Figures 2—4, we note that the results obtained by the present BEM agree very well
with those given by the FDM at every time step. Moreover, by the above-men-
tioned FDM, we also determine the corresponding values of 6,,, and f, related to
thermal runaway. As listed in Table 1, the values of 6,,, and . given by the FDM

agree well with those given by the present BEM approach. This verifies the validity
of the present general BEM.

CONCLUSIONS

In this article, we apply the general BEM [1-3] to solve a 2D, unsteady,
nonlinear heat transfer problem with inhomogeneous materials. We consider here
the 2D parabolic heat conduction equation with temperature-dependent heat
source and thermal conductivity coefficients different along the x and y directions.
This problem cannot be solved by the classical BEM. However, the general BEM
works well for this strongly nonlinear problem.



240 S.-J. LIAO AND A. T. CHWANG

Level T

4.65
4.28
3.92
3.56
3.19
2.83
246
210
173
1.37
1.00

> @

- N WA OdON OO

Microwave
heating

alpha
=1.00

Figure 7. Temperature distribution of a unit plate under microwave heating for o= 1.00 and = 84.0
(=2, v= 2) with k(0)= exp(0) and k,(0) = 1.

Thermal runaway occurs as the value of § becomes large. In the four cases
under consideration, the general BEM for unsteady nonlinear heat transfer prob-
lems successfully predicts the critical values of f, for the occurrence of thermal
runaway, which agree very well with those obtained by the FDM approach, as
shown in Table 1 and Figure 8.

We note that the domain integral appears in the general BEM formulation,
which might decrease the numerical efficiency. However, a boundary-element
technique called the dual reciprocity BEM [7,9,10] has been developed to avoid
the domain integration by transforming it to a surface integration. Moreover, the
integral is suitable for parallel computation. Besides, all of the left-hand matrices
for the system are the same at every time step for each iteration, so the inverse
matrices can be used many times. Thus, the general BEM may become more
efficient if combined with the dual reciprocity BEM and parallel computation.

Finally, we emphasize that the classical BEM is invalid to solve nonlinear
unsteady heat transfer problems with inhomogeneous materials. However, the
general BEM is still valid for the problem under consideration. This demonstrates
once again the validity and the great potential of the general BEM. We believe
that the general BEM can be applied to solve strongly nonlinear unsteady prob-
lems that cannot be solved by the classical BEM.
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t = 0.05

T = 04 STEADY STATE

Figure 8. Temperature distribution (given by the FDM) of a unit plate
under microwave heating for ¢ = 0.25 and = 14.1 (e= 2, v= 2) with
k,(0) = exp(0/4) and k,(0)= 1.
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