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a b s t r a c t

In this paper, the closed-form analytic solutions of two new Faraday’s standing solitary
waves due to the parametric resonance of liquid in a vessel vibrating vertically with a con-
stant frequency are given for the first time. Using a model based on the symmetry of wave
elevation and the linearized Boussinesq equation, we gain the closed-formwave elevations
of the two kinds of non-monotonically decaying standing solitary waves with smooth crest
and the even or odd symmetry. All of them have never been reported, to the best of our
knowledge. Besides, they can explain some experimental phenomena well. All of these are
helpful to deepen and enrich our understanding about standing solitary waves and Fara-
day’s wave.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As pointed out by Faraday [1] and Benjamin and Ursell [2], when a vessel containing liquid vibrates vertically with a
constant driving frequency ⌦ , the so-called parametric resonance occurs so that standing surface waves are observed, in
case that the liquid oscillates with a constant frequency ! that is half of the driving frequency ⌦ , say, ! = ⌦/2. In fact,
Faraday waves have been observed in many fields of science. For example, the experimental observation of Faraday waves
in a Bose–Einstein condensate was reported by Engels et al. [3], and the Faraday instability on a free surface of superfluid
4He was investigated by Abe et al. [4] and Ueda et al. [5]. In 2011, using a vertically vibrating Hele–Shaw cell (i.e. nearly two
dimensional) partly filled with water, Rajchenbach, Leroux and Clamond [6] did an excellent experiment and observed two
new standing solitary surface waves with the odd or even symmetry. These new standing waves have an unusual character-
istic: their elevations non-monotonically decay to zero in the horizontal direction, while vibrating periodically in the vertical
direction. Especially, they pointed out that ‘‘the existence of an oscillion of odd parity had never been reported in anymedia
up to now’’. To the best of our knowledge, theoretical solutions have never been found for these new standing solitarywaves.

In this paper, the closed-form analytic solutions of two new Faraday’s solitary waves1 due to the parametric resonance of
liquid in a vessel vibrating vertically with a constant frequency are reported. Using a model based on the symmetry of wave
elevation and the linearized Boussinesq equation [7], we gain the closed-form solution of two kinds of non-monotonically
decaying standing solitary waves with the even or odd symmetry. Both of them have never been reported, to the best of

E-mail address: sjliao@sjtu.edu.cn.
1 Here, the solitary wave means the localized wave.
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our knowledge. Especially, they can explain some experimental phenomena currently reported by Rajchenbach, Leroux
and Clamond [6] well. All of these are helpful to deepen and enrich our understanding about standing solitary waves and
Faraday’s wave.

2. Closed-form solutions of the new standing waves

Consider a two-dimensional (2D) Faraday’s waves in the water depth h, excited by a vertically vibrating horizontal
bottom being purely sinusoidal with a single driving frequency ⌦ . Let ! denote the frequency of the excited standing wave,
respectively. In theory, it is well-known that the parametric resonance occurs when ! = ⌦/2, say, the driving frequency
⌦ of the bottom is twice the frequency ! of the liquid vibration [1,2], which was currently confirmed once again by the
excellent experiment of Rajchenbach, Leroux and Clamond [6]. Thus, in this paper, we focus on the case ! = ⌦/2 for the
parametric resonance.

We use here amodel based on the symmetry ofwave elevation and the linearized Boussinesq equation [7]. Let ⌘(x, ⌧ ) de-
note the dimensionless wave elevation, where ⌧ = ! t = ⌦ t/2 denote the dimensionless time and x is the dimensionless
horizontal coordinate with x = 0 corresponding to the wave crest. According to the excellent experiment of Rajchenbach,
Leroux and Clamond [6], we have many reasons to assume that the wave elevation has either the even symmetry about the
wave crest x = 0, i.e.

⌘(x, ⌧ ) = ⌘(�x, ⌧ ), �1 < x < +1, (1)

or the odd symmetry

⌘(x, ⌧ ) = �⌘(�x, ⌧ ), �1 < x < +1, (2)

respectively. Assuming that the crest is smooth, the even symmetry (1) gives us the boundary condition

⌘x(0, ⌧ ) = 0. (3)

Besides, the odd symmetry (2) is equivalent to the boundary condition

⌘(0, ⌧ ) = 0. (4)

Using the above symmetry and the boundary condition at x = 0, we only need seek a solution ⌘(x, ⌧ ) in the interval 0 <
x < +1. It should be emphasized that the symmetry plays an important role in our approach, as shown below.

Assumed that the fluid is inviscid, incompressible, and the flow is irrotational in 0 < x < +1 (i.e. the flow is not nec-
essarily irrotational at x = 0). Such kind of free surface in the interval 0 < x < +1 can be modeled approximately by
the famous Boussinesq equation [7], which describes many wave phenomena in shallow water. In physics, the principle of
relativity requires that the equations describing the laws of physics have the same form in all admissible frames of refer-
ence. Therefore, following Boussinesq [7] and using water depth h as a characteristic length, one can gain the dimensionless
Boussinesq equation in the reference-frame fixed with the vertically vibrating bottom:

⌘⌧⌧ � g 0
✓

⌘xx + 1
3
⌘xxxx + 3⌘⌘xx + 3⌘x⌘x

◆
= 0, 0 < x < +1, (5)

subject to the bounded condition

|⌘(x, ⌧ )| < S, 0  x < +1, (6)

where g 0 is the so-called dimensionless ‘‘apparent gravity acceleration’’ and the S is a large enough positive constant, re-
spectively. Note that the above equation has exactly the same form as the traditional Boussinesq equation [7], except that
the ‘‘gravity acceleration’’ term g 0 has a different meaning. Obviously, according to Einstein’s theory of general relativity, for
an observer moving with the vertically vibrating horizontal bottom that is not an inertial frame of reference, the so-called
apparent gravity acceleration reads

g 0 = G (1 � F cos 2⌧ ) ,

where G = g/(h!2) is the dimensionless acceleration of gravity, g is the acceleration due to gravity, F = � /g denotes the
dimensionless driving acceleration with � being the amplitude of the forcing acceleration of the bottom, respectively.

Assume that the wave amplitude is so small that all nonlinear terms of (5) can be neglected. Thus, we have the linearized
Boussinesq equation in the non-inertial frame of reference fixed with the vertically vibrating bottom:

⌘⌧⌧ � G (1 � F cos 2⌧ )

✓
⌘xx + 1

3
⌘xxxx

◆
= 0, 0 < x < +1. (7)

Our purpose is to find the solutions of Eq. (7), subject to the bounded condition (6) and either the boundary condition (3) for
the standing solitary waves with the even symmetry of elevation or (4) with the odd symmetry, which oscillate periodically
in time ⌧ with the period T = 2⇡ .
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Note that ⌧ = !t and ! = ⌦/2, where ⌦ is the driving frequency of the vertically vibrating bottom. According to the
excellent experiment done by Rajchenbach, Leroux and Clamond [6], the parametric resonance occurs when ! = ⌦/2.
Thus, we express the standing wave in the form

⌘(x, ⌧ ) = f (⌧ ) e�x, 0 < x < +1, (8)
where f (⌧ ) is a periodic function with the period T = 2⇡ , and � is an unknown eigenvalue to be determined. Note that the
eigenvalue � can be real or complex. Substituting the above expression into (7), we have a linear ordinary different equation

f 00(⌧ ) � G�2
✓
1 + �2

3

◆
(1 � F cos 2⌧ )f (⌧ ) = 0. (9)

The above equation can be rewritten as the standard Mathieu equation

f 00(⌧ ) + [a � 2q cos(2⌧ )] f (⌧ ) = 0, (10)
where

a = �G�2
✓
1 + �2

3

◆
, q =

✓
F
2

◆
a. (11)

Thus, f (⌧ ) is a periodicMathieu functionwith the characteristic value a and the parameter q, denoted by f (⌧ ) = Mc(⌧ ; a, q).
Note that similar Mathieu-type analyses have been carried out for Faraday waves in one and two-component Bose–Einstein
condensates [8–10].

It is well-known that, for a given non-zero parameter q, the correspondingMathieu functions f (⌧ ) of Eq. (10) are periodic
in ⌧ only for certain values of a, called Mathieu characteristic values. According to Floquet’s Theorem, any Mathieu function
f (⌧ ) can be written in the form eir⌧ f ⇤(⌧ ), where f ⇤(⌧ ) has period 2⇡ and r is the Mathieu characteristic exponent. The
Mathieu function f (⌧ ) is periodic only when the characteristic exponent r is an integer or rational number.

For given characteristic value a and parameter q = (aF)/2, let us consider the even Mathieu function f (⌧ ) of (10) with
the characteristic exponent r = 1 so that f (⌧ ) has the period T = 2⇡ . As mentioned above, the characteristic value of the
evenMathieu function f (⌧ )with characteristic exponent r = 1 given by the parameter qmust be equal to the characteristic
value a itself. This gives, by means of the computer algebra systemMathematica, the following nonlinear algebraic equation

MathieuCharacteristicA[1, aF/2] = a, (12)
where the Mathematica command MathieuCharacteristicA[r, q] is used to gain the characteristic value a for even Mathieu
functions with characteristic exponent r and the given parameter q. Given the dimensionless driving acceleration F , the
above nonlinear algebraic equation contains only the unknown characteristic value a, denoted by a⇤. The corresponding
solution

f (⌧ ) = Mc(⌧ ; a⇤, Fa⇤/2)
is an even Mathieu function with the period 2⇡ . It should be emphasized that the characteristic value a⇤ depends only on
the dimensionless driving acceleration F .

It is found that the nonlinear algebraic equation (12) has two solutions in general. For example, when F = 2, we have a
positive characteristic value a⇤ = 2.49527 and a negative characteristic value a⇤ = �3.47044, respectively. For different
values of the dimensionless driving acceleration F , we have different characteristic value a⇤. The two curves of the character-
istic value a⇤ versus the dimensionless driving acceleration F are as shown in Figs. 1 and 2. Note that, the maximum positive
characteristic value a⇤

max is 2.52168, corresponding to the dimensionless driving acceleration F = 2.28. Note that, according
to the excellent experiment of Rajchenbach, Leroux and Clamond [6], the parametric resonance was found when F = 2.0.
So, the above theoretical result can partly explain why Rajchenbach, Leroux and Clamond [6] observed the parametric res-
onance in case of F = 2.0, since the corresponding characteristic value a⇤ = 2.49527 is rather close to a⇤

max = 2.52168 so
that the parametric resonance more easily created and observed. We will discuss this later in detail.

According to (11), as long as the characteristic value a⇤ is known, it is easy to gain the unknown eigenvalue � by solving
the nonlinear algebraic equation

�2
✓
1 + �2

3

◆
+ µ = 0, (13)

where

µ = a⇤

G
.

Thus, � is dependent upon the dimensionless gravity acceleration G and the dimensionless driving acceleration F , since a⇤

is determined by F only. When µ > 3/4, the above nonlinear algebraic equation has four complex roots

�1,2,3,4 = ±

vuut�3
2

± i

s

3
✓

µ � 3
4

◆
, (14)
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Fig. 1. The positive characteristic values of a⇤ versus the dimensionless driving acceleration F given by the linearized Boussinesq equation (7).

Fig. 2. The negative characteristic values of a⇤ versus the dimensionless driving acceleration F given by the linearized Boussinesq equation (7).

where i = p�1 denotes the imaginary unit. When 0 < µ < 3/4, there exist four pure imaginary roots

�1,2 = ±i

vuut3
2

±
s

3
✓
3
4

� µ

◆
. (15)

When µ < 0, there are two pure imaginary roots

�3,4 = ±i

vuut3
2

 r
1 � 4

3
µ + 1

!

(16)

and two real roots

�3,4 = ±

vuut3
2

 r
1 � 4

3
µ � 1

!

. (17)
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Thus, when µ > 3/4, we have four complex roots � = ±↵ ± �i with ↵ > 0 and � > 0, corresponding to the wave
elevation in a general form

⌘(x, ⌧ ) = A1Mc(⌧ ; a⇤, q⇤)e�↵x (cos�x + i sin�x) + A2Mc(⌧ ; a⇤, q⇤)e�↵x (cos�x � i sin�x)

+ A3Mc(⌧ ; a⇤, q⇤)e+↵x (cos�x + i sin�x) + A4Mc(⌧ ; a⇤, q⇤)e+↵x (cos�x � i sin�x) , (18)

where A1, A2, A3 and A4 are constants. However, restricted by the bounded condition (6), only the solution in the form

⌘(x, ⌧ ) = A1Mc(⌧ ; a⇤, q⇤)e�↵x (cos�x + i sin�x) + A2Mc(⌧ ; a⇤, q⇤)e�↵x (cos�x � i sin�x)

= Mc(⌧ ; a⇤, q⇤)e�↵x (A0 cos�x + B0 sin�x) , 0 < x < +1, (19)

has physical meanings, where A0 = A1 + A2 and B0 = (A1 � A2)i are real constants.
Thus, using the boundary condition (4) for the odd symmetry and enforcing A0 = 0, we have the wave elevation

⌘(x, ⌧ ) = B0Mc(⌧ ; a⇤, q⇤) sin(�x)e�↵x, 0 < x < +1. (20)

Then, due to the odd symmetry (2), we have the odd-pattern elevation

⌘(x, ⌧ ) = B0Mc(⌧ ; a⇤, q⇤) sin(�x)e�↵|x|, �1 < x < +1. (21)

Similarly, using the boundary condition (3) for the even symmetry (1), we have the even-pattern wave elevation

⌘(x, ⌧ ) = A0Mc(⌧ ; a⇤, q⇤)e�|↵x|

cos(�x) +

✓
↵

�

◆
sin(�|x|)

�
, (22)

which has a smooth crest and is valid in the whole domain�1 < x < +1. Note that the standing solitary wave elevations
(21) and (22) decay non-monotonically in the x direction, and have no peaked crest.

For example, in case of the driving frequency ⌦ = 11 Hz with the vibration amplitude 4.1 mm and water depth
5 cm, which were used by Rajchenbach, Leroux and Clamond [6] in their excellent experiment, we have the dimensionless
driving acceleration F ⇡ 2 and the dimensionless gravity acceleration G ⇡ 0.164. When F = 2, there exist one positive
characteristic a⇤ = 2.49527 and one negative characteristic a⇤ = �3.47044, corresponding to µ = a⇤/G = 15.2151 and
µ = �21.1612, respectively. Especially, when a⇤ = 2.49527, i.e. µ = 15.2151, we have four complex eigenvalues

� = ±1.62113 ± 2.03126i,

corresponding to a non-monotonically decaying standing solitary wave with the odd symmetry and the smooth crest

⌘(x, ⌧ ) = A0Mc(⌧ ; 2.49527, 2.49527) sin(2.03126x)e�1.62113|x|, (23)

as shown in Fig. 3, and the wave elevation with even symmetry and smooth crest

⌘(x, ⌧ ) = A0Mc(⌧ ; 2.49527, 2.49527) e�1.62113|x| [cos (2.03126x) + 0.798091 sin (2.03126|x|)] , (24)

as shown in Fig. 4, respectively.
It should be emphasized that the standing solitary wave (23) has the odd parity about x = 0. Note that Rajchenbach,

Leroux andClamond [6] found a similar standing solitarywavewith the oddparity in their excellent experiment, and pointed
out that ‘‘the existence of an oscillon of odd parity had never been reported in any media up to now’’. Thus, the closed-form
solution (23) might provide a theoretical explanation for this experimental phenomenon.

Note that the standing solitarywaves (23) and (24) do not decaymonotonically, as shown in Figs. 3 and 4,which are quali-
tatively similar to those experimentally found by Rajchenbach, Leroux and Clamond [6]. Note that these non-monotonically
decaying standing solitary waves (23) and (24) are not exactly the same as those found by the excellent experiment of
Rajchenbach, Leroux and Clamond [6]. Such a kind of difference may likely be attributed to the probe motion in their ex-
periment [6], and also to the neglect of the nonlinearity of the Boussinesq equation that is valid for fairly long waves with
small-amplitude in shallow water. The nonlinearity of the Boussinesq equation might affect the eigenvalue �, which de-
termines the decay-rate of wave elevation. However, the nonlinear terms should not qualitatively influence the shape of
wave elevation. Since we mainly focus on the shape of wave elevation in this article, the neglect of the nonlinear terms is
acceptable. Obviously, better analytic approximations of the two new standing solitary waves should be gained, if the exact
Boussinesq equation (5) or the fully nonlinear wave equation is solved.

3. Discussions and concluding remarks

In this paper, some new Faraday’s waves due to the parametric resonance of liquid in a vessel vibrating vertically with a
constant frequency are reported. Using a model based on the symmetry of wave elevation and the linearized Boussinesq
equation, we gain the closed-form solutions of two kinds of non-monotonically decaying standing solitary waves with
the even or odd symmetry. They can explain well, although partly, some experimental phenomena currently reported by
Rajchenbach, Leroux and Clamond [6].
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a b

c d

Fig. 3. Non-monotonically decaying standing solitary wave (23) with the odd symmetry and a smooth crest. (a): ⌧ = 0; (b): ⌧ = 7/5; (c): ⌧ = 9/5; (d):
⌧ = ⇡ .

First, our closed-form solution (21) has the odd parity about x = 0, as shown in Fig. 3. Note that Rajchenbach, Leroux and
Clamond [6] found a similar standing solitary wave with the odd parity in their excellent experiment, and pointed out that
‘‘the existence of an oscillon of odd parity had never been reported in any media up to now’’. So, our closed-form solution
(21) supports this experimental phenomenon.

Secondly, based on the linearized Boussinesq equation, the characteristic value a⇤ is dependent upon the dimensionless
driving acceleration F only. Thus, for given dimensionless gravity acceleration G = g/(h!2) = 4g/(h⌦2), the occurrence
of the non-monotonically decaying standing solitary waves mainly depends on the dimensionless driving acceleration F =
� /g of the vertically vibrating bottom: the larger a⇤, the larger possibility of the occurrence of the non-monotonically decay-
ing standing solitarywaves, sinceµ = a⇤/G > 3/4 is the criterion for the linearized Boussinesq equation. According to Fig. 1,
the non-monotonically decaying standing solitary waves occur with the maximum possibility at F ⇡ 2.28, corresponding
to the maximum characteristic value a⇤

max = 2.52168. Note that Rajchenbach, Leroux and Clamond [6] observed the two
non-monotonically decaying standing solitary waves at F = 2, corresponding to the characteristic value a⇤ = 2.49527 that
is rather close to a⇤

max = 2.52168. So, our theoretical result can explain this experimental phenomena quite well.
Thirdly, Rajchenbach, Leroux and Clamond [6] found experimentally that the two non-monotonically decaying standing

solitary waves occur in an interval FL < F < FR. They gave it a theoretical explanation using Meron’s stability theory [11].
Based on the linearized Boussinesq equation, we gain the criterion of occurrence of the two non-monotonically decaying
standing solitary waves: µ = a⇤/G > 3/4. According to Fig. 1, a⇤ has a maximum a⇤

max = 2.52168 at F = 2.28. So, given a
proper value of G, one might find a closed interval of F for the occurrence of the two non-monotonically decaying standing
solitary waves. Thus, our theoretical result about the criterion µ > 3/4 can explain this experimental phenomenon, too.

Seriously speaking, the profile of the standingwaves should be dependent upon not only the dimensionless accelerations
G, F but also thewave height. However, based on the linearized Boussinesq equation, the profile of the two standingwaves is
dependent on G and F only. This is similar to the periodic travelingwaves, whosewave profile is sinusoidal and independent
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Fig. 4. Non-monotonically decaying standing solitary wave (24) with even symmetry and a smooth crest. Solid line: ⌧ = 0; Dashed line: ⌧ = 7/5;
Dash-dotted line: ⌧ = 3⇡/4; Dash-dot-dotted line: ⌧ = ⇡ .

of wave height. Besides, the detailed evolution of the standing waves should be also influenced by wave height. So, if the
influence of wave height is considered, the nonlinear Boussinesq equation or even the fully nonlinear water wave equations
should be used for a more accurate wave profile and better understanding about such a kind of standing waves.

Note that, using the even or odd symmetry, we have either the boundary condition (3) or (4) at x = 0, so that it is enough
for the governing equation to be satisfied in the interval 0 < x < +1 except x = 0. This is well-known and widely used in
the theory of differential equations.

Traditionally, one needs to give a global expression of a solution in the whole domain. However, this is difficult in many
cases. Fortunately, this traditional idea is out of date. In modernmathematics, we often express a smooth function by lots of
local simple functions in a finite number of sub-domains: this idea is widely used in the Finite Element Method (FEM). Al-
though there exists singularity at each boundary of the sub-domainwhere the solution is not smooth, such kinds of solutions
are widely accepted and used. In this paper, we use different base functions to express the solution of a new type of standing
waves found by experiment in two sub-domains only, i.e. (�1, 0) and (0, +1), and connect them by the symmetry and
the smoothness condition at x = 0. Compared to the FEM, themathematical approach used in this article ismore traditional:
we use the symmetry to divide thewhole domain into only two sub-domains, and besides the solutions are smooth at x = 0.

Finally, it should be emphasized that the closed-form wave elevations of the two non-monotonically decaying standing
solitary waves (21) and (22) are obtained under the assumption of the even or odd symmetry of wave elevation bymeans of
the linearized Boussinesq equation with the neglect of viscosity of fluid in the interval 0 < x < +1. The symmetry has an
important role in our approach. The fact that the two closed-form solutions explain well some phenomenon of the excellent
experiment of Rajchenbach et al. [6] indicates the validity of thismodel. In addition, since the linearized Boussinesq equation
is only a simplifiedmodel for shallowwater waves, all conclusions and theoretical predictions reported in this article should
be further checked and verified by fine numerical simulations and physical experiments in future, even though our closed-
form solutions explain well some experimental phenomena of Rajchenbach et al. [6]. All of these are helpful to deepen and
enrich our understanding about standing solitary waves and Faraday’s wave.
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