
E L S E V I E R  

Engineering Analysis with Boundary Elements Vol. 20, No. 2, pp. 91-99,  1997 
© 1997 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 

P I I :  S 0 9 5 5 - 7 9 9 7 ( 9 7 ) 0 0 0 4 3 - X 0955-7997/97/$17.00 + 0.00 

Boundary element method for general nonlinear 
differential operators 
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In this paper, the basic ideas of homotopy in topology is applied to give a kind of 
high-order Boundary Element Method (BEM) formulations for strongly nonlinear 
problems governed by quite general nonlinear differential operators which may NOT 
contain any linear operators at all. As a result, the traditional BEM which treats the 
nonlinear parts as the inhomogeneities is only a special case of the proposed 
formulations. Two simple examples are used to illustrate its effectiveness. @ 1997 
Elsevier Science Ltd. 

Key words: BEM, nonlinearity, general differential operators. 

I INTRODUCTION 

Although Boundary Element Method (BEM) is in prin- 
ciple based on the linear superposition of fundamental solu- 
tions 1-3,5.13, many researchers 8"12-14 have applied it to solve 
nonlinear differential equation 

A(u) = f  . (1) 

If this nonlinear operator A can be divided into two parts Lo 
and No, where L 0 is linear, No is nonlinear and A = L 0 + 
holds, then traditionally, writing the original eqn (1) as 
Lo(u) = f -  N0(u), we can obtain the following equation 
of integral operator 

c(~)u(~)= ~r  [uB°(c°°)--°~°B°(u)ldr 

+ ~n [f-N°(u)]~°° dr ,  (2) 

where ~00 is the fundamental solution of the adjoint operator 
of the linear differential operator L0, B0 is its boundary 
operator, I" denotes the boundary of the domain fL Note 
that the domain integral of above equation contains the 
unknown function u(7) so that iteration is necessary. 

Obviously, the operator L0, which denotes linear parts of 
the nonlinear operator A, has special meaning for above 
traditional BEM: firstly, this kind of linear operator L0 
must exist; secondly, we must know its corresponding fun- 
damental solution ~o0. But unfortunately, both of these are 
not always satisfied so that this traditional BEM described 
above has the following restrictions: 

1. Many nonlinear differential equations do NOT 

contain any linear terms at all, i.e., A = L0 + N0 
does NOT hold, so that the traditional BEM is 
useless; 

2. Even if the nonlinear differential operator A contains 
this kind of linear operator L0, L0 may be so complex 
that the corresponding fundamental solution is either 
unknown or very difficult to be obtained. 

So, it seems necessary to develop a kind of new BEM for 
quite general nonlinear problems, 

(I) which can be applied to solve equations governed by 
quite general nonlinear differential operators that may 
NOT contain any linear terms at all; 

(II) which can give us great freedom to select a proper, 
simple linear operator whose fundamental solution 
should be familiar to us; 

(III) which contains logically the traditional BEM. 

We can give an example of the applications of the tradi- 
tional BEM in solving nonlinear problems. We know that 
Navier-Stokes equations are usually very difficult to be 
solved. A boundary element method of solving Navier-  
Stokes equations in streamfunction-vorticity formulations 
was presented in the reference 12 in 1990, which is based 
on a set of fundamental solutions providing a complete 
coupling between the streamfunction and vorticity 
equations so that iteration is not needed in case Re = 0. 
In 12, the nonlinear terms of Navier-Stokes equations 
are considered in the traditional way as the inhomogeneities 
are treated by simple direct iteration, but this numerical 
scheme is unstable for the 2D viscous flow in a 
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square cavity in case that the corresponding Reynold's  
number Re is greater than 300, as mentioned in the 
reference i_, 

The author has been trying to develop a kind of new 
nonlinear analytical technique, namely Homotopy Analysis 
Method 6-It, by means of the basic ideas of homotopy in 
topology 4. Homotopy Analysis Method (which is called 
Process Analysis Method in the author 's  early research) is 
independent of  the presence of small parameters of  the con- 
sidered nonlinear problems so that, different from the well- 
known perturbation techniques, it can be applied to solve 
nonlinear problems which contain no small parameters. As 
one of its applications, the author s gave a kind of high-order 
streamfunction-vorticity BEM formulation for 2D steady- 
state Navier-Stokes  equations. The corresponding first- 
order formulations are the same as those given in t2 and 
are also unstable in case R~ > 300 for the 2D viscous 
square cavity flow, but the high-order (for instance, 
second-order) formulations are still stable in case R~. = 
2000. The author's current research indicates that these 
high-order BEM formulations are even still stable in case 
Re = 10 4 for 2D square cavity flow which corresponds to a 
very strong nonlinearity. 

In this paper, the basic ideas described in the reference s 
are greatly generalized to give a new, much more general 
BEM for strongly nonlinear problems. And two simple 
examples are used to illustrate the effectiveness of  the 
proposed method. 

2 THE BASIC IDEAS OF THE P R O P O S E D  BEM 

Consider a quite general nonlinear differential operator ~q 
which may NOT contain any linear terms at all, and then 
research again the eqn (1). 

Select a proper, simple linear operator £, whose t'unda- 
mental solution is familiar to us and which may be different 
from L0 even if L0 exists. Then, we can construct a homo- 
topy v(7,p) f] × [0, 1] ---, R, which satisfies 

c~(v) = (1 - pE(uo) + plL(u) - . a (v )  + f l ,  p ~ 10, i I, 

(3) 

where u0(7) is an initial solution which can be selected with 
great freedom, p ~ [0,1 ] is the imbedding parameter, v(7, p) 
is now a function of both p E [0,1] and f~. For simplicity, 
we call the eqn (3) the zero-order deformation equation. 

Obviously, from eqn (3), the following two expressions 

v(7, O) = Uo(7 ), (4) 

v(E I ) = u(~), (5) 

hold, where u(7) is the solution of eqn (1). Therefore, u0(7) 
and u(7) are homotopic, denotes as v(7,p) : u0(7) = u(7). 

Assume that the 'continuous deformation' v(7,p) is 
smooth enough about p so that 

v['<(7,p)- omv(~,P) 
, m =  1,2,3,  (6) 

Op m • "  " '  

called mth-order deformation derivatives, exist. Then, 
according to the theory of Taylor 's  series, we have from 
(4) that 

~ ;¢"v(~,p) ( p"'~ 
a l p )  = .v(i,O)+ ~ - -  

. . . .  , an"  I,, •• \ ' n ' )  
( 7 )  

z m 

- . o < , , +  z (5).'0"'<,, 
?#l  ~ ] 

. Iml/z~ where, u 0 t-J is the value of vlmJ(7,0), which can be 
obtained in the way described later. We call the expression 
(7) the Taylor's homotopy series. 

The value of the convergence radius p of the Taylor 's  
series (7) is generally finite. In case P -> 1, it holds from 
(5) and (7) that 

-<- Iml,'=,< E POt t! 
u ( r ) = u 0 ( ?  ) + m! ' (8) 

m =  ] 

But, in case O < l, we have only 

v(E X) = u0(?) + ~ ~ , (9) 
# = l  

where 0 < X < P < 1. Note that v(7, X) obtained by above 
expression is usually a better approximation than the initial 
solution u0(;) so that expression (9) gives a family of the 
high-order iterative formulations: 

+,(~)=u~(~)+ X ~l;"l(~) " ( k = 0 ,  1,2 . . . .  ), 

(10) 

where M (M = 1,2,3 .... ) denotes the order of  the formula- 
tion, ul~'l(7) (m = 1,2,3 .... ) are dependent upon uk(~) and 
can be determined as follows. 

Differentiating the zero-order deformation eqn (3) with 
respect to the imbedding parameter p, we obtain the first- 
order deformation equation 

L(v [jl) = -£(uo) +£(v) 

-N(v) +J+ p{L(v'l') - 0A(V)vlil}.&, (11) 

And similarly, differentiating above equation with respect 
to p gives the second-order deformation equation 

£(vl2I) = 2{  L(v[ll) - OR(V)Jl]ov J ~ 

+p{£(vl2l)--OA~v[21 02~2v)(v[ll)2 } . (12) 

Generally, we have the ruth-order deformation equations at 
p = 0 as follows: 

£( ~J~;"b =fro(7), (13) 

where 

jg (;) = f - A ( u k ) ,  (14) 
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f2(7) =2{L(vt°~])- O"q(v)vttl } p=o 
09 0 

(15) 
Element Method (BEM) to solve these linear equations. 
Thus, the proposed BEM is only an application of the 
Homotopy Analysis Method. 

a m-  'A( . )  
f ~ ( 7 ) = m  L(vlo m-ll) dp,,_-- ~ [ ( m >  1). 

p=O) 

(16) 

Note that fl(7) is the negative residual of  the original eqn 
(1) and is the same for ANY linear operators L selected for 
the proposed BEM. The above linear eqn (13) can be easily 
solved by Boundary Element Method so that, according to 
(2), we obtain the corresponding boundary integral 
equation 

C(-F)P~n'(r): fF [P[m]B(("O)--OJB(v[m])] dF  -~- fflfm~ dR. 

(17) 

Note that we have now very great freedom to select the 
corresponding linear operator L, i.e., we can now select a 
simple, proper linear operator whose fundamental solution 
is familiar to us, even if the considered nonlinear problem 
does NOT contain any linear operators at all! Especially, if 
-,q = Lo + 9V~ holds and we select L = Lo as the linear 
operator, the formulation (17) in case m = 1 gives the same 
expression as the expression (2). Obviously, for the pro- 
posed BEM, it is not important whether the nonlinear 
operator A contains the linear operator L0 or not; and 
even if this kind of linear operator L0 exists, we may still 
select other simpler linear operators, because the operator 
L0, which is very important for the traditional BEM, has 
now no special meaning at all for the proposed BEM - it is 
only one of  marry possible linear operators L suited to the 
proposed BEM. Thus, the three demands (I), (II), and 0 ID 
listed in the first section are completely satisfied. 

As the last part o f  this section, let us consider some simple 
points. We kno~v that homotopy technique 4 emphasizes the 
netations and the continuous changes between different 
things. As a result o f  it, the Taylor ' s  homotopy series (7) 
gives a kind of  relation between the solution u(7) and the 
free selected initial solution u0(r) by infinite number of 
rlo~l'(7), the high-order deformation derivatives at p = 0. It 
must be emphasized that a, t0"l(7) (m = 1,2,3 .... ) satisfies the 
linear eqn 0 3 )  so that the Taylor ' s  homotopy series (7) 
converts a nonlinear problem into infinite number of  corre- 
spontliag linear problems (I believe that to find a new non- 
finear technique is equivalent to finding a new kind of such 
conversioa). Note that we olbtain this kind of conversion 
withoat using small parameters - perturbation techniques 
use small parameters supposition to obtain this kind of con- 
version - so that the proposed method is independent upon 
small parameters. This is the main basic ideas of  Homotopy 
Analysis Method, whose effectiveness has been proved in 
other papers of  the author 6- l i. Because the ruth-order defor- 
mation eqn (13) is always linear about ruth-order deforma- 
tion derivatives v[0ml(F) (a mathematical proof  about it has 
been given by Liaor), it is natural to apply Boundary 

3 T W O  S I M P L E  E X A M P L E S  

3.1 Example 1 

In order to illustrate the effectiveness of  the proposed BEM, 
let us consider at first the following nonlinear boundary- 
value problem 

x2Uxx + xU  x -~- (x 2 - 1)U - ot(U 2 + U 2) 

= x cos(x) - sin(x) - e¢, x E [0, 27r], a > 0, (18) 

with the two boundary conditions U(0) = U(27r) = 0. 
We can use respectively the following three sorts of  linear 

operators 

MODE 0 : Lo(U) =xZUxx +xUx + (x 2 - I)U, 

MODE 1 : £1(U)=Uxx-[j2U, {~.0, 

MODE 2 : £ 2 ( U )  = Uxx + ~2U, ~ > O, 

to construct the corresponding zero-order deformation 
equation as follows 

Lv(V ) = (1 -- p)£v(Uo) +p{L~(V) - A ( V )  + f } ,  

x G  [0,27r], p C  [0, 1], ( 3 ,=0 ,1 ,2 )  (19) 

which has two boundary conditions 

V(0, p) = V(27r, p) = 0, (20) 

where 

A(v)  = x 2 V x x  + xVx  + (x  2 - l )V - ,~(v 2 + v~), 

f(x) = x cos(x) - sin(x) - a ,  

V(x,p) : [0,27r] × [0,1] ---* R is a kind of homotopy and 
Uo(x) is a free selected initial solution satisfying the bound- 
ary conditions U0(0) = U0(27r) = 0. 

Similarly, we can obtain the corresponding high-order 
iterative formulations 

M xmvo~1(X) 
Uk + l ( x )=  Uk(x) + Z.. m-5. ' m = l  

where V~(x) satisfies the following 
equation 

£3,(V; m]) =fm(X), 

x E  [0 ,2 r ]  ( 3 ,=0 ,1 ,2 ,  m =  1,2,3. . . )  

with the two boundary conditions 

Vo["](O) = Vo[ml(27r) = O. 

( k = 0 ,  1,2 . . . .  ), 

(21) 

linear differential 

(22) 

(23) 
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Here, 

f j  ( x )  = x  c o s ( x )  - s i n ( x )  - o~ - A(U~,.),  

8-  

{ [ 1} / 2 ( x ) = 2  L'r(V~)'I)-JL°(V'I ' II)+ 2°~ Ut~V([)'I-t- d.-~- d.~ ' 

d Uk d V~I) 2 I 
f ~ ( x ) = 3  £y(V,I, 21) - L,,(V,I,21) + 2~ Uk V,121+ d,W dx 

+ (v.",)2+ 

In case 3' = 0 (MODE 0), we have simply the solution of 
l inear eqn (22) with the boundary  condi t ion (23) as follows: 

V[oml(x) = Wo(X,x')fm(X') dx', x ~ 10, 27r1 (m --> 1), 
0 

(24) 

where 

~%(x,x') = 

~ 4  

21 / 2  
0 1 2 3 4 5 

X 

7rJj (x<)[J  I (x>)Ni (27r) - N] (x>)Ji (27r)1 

2x'Jj (2rr) 

x< = min(x ,x ' ) ,  x> = max(x ,x ' ) ,  (25) 

is the corresponding fundamenta l  solution of  M O D E  0. 
Here, Jl(X), Nl(x)  are respectively the Bessel ' s  funct ions 10- 

of  the first and the second kind. 

But, in case 3' = 1 or 3' = 2, we have 

v~)ml(x) = Cmwv(x, O) - D,,,wy(x, 27r) 8 

+ o w v ( x , x ' ) f . ( x ' ) d x ' ,  ( m =  1 ,2 ,3  . . . .  ). 
6 

(26) 

where. 

co~(x,x') = ~1, , ' l  (27) 

x')  = - 2 ~  s in03lx - x' l) ,  (28)  2 CO2(X, 

are the corresponding fundamenta l  solutions of M O D E  1 

and M O D E  2, respectively. The two coefficients Cm and D,,, o 
can be determined by the boundary  condit ion (23): 

Cmo)y(O , 0 )  - -  D,,wy(0, 27r) = - %(0 ,  x ' )f , , (x ' )  dx' ,  
0 

(29) 

Cmwv(27r, O) - Dmwv(2rc, 27r) 

~27r ¢ , p 

= - o %(27r, x )/),,(x ) ctr'. (30) 

Note that the linear operators L ] and L2 are wel l -known and 
their corresponding fundamenta l  solutions w j (x,x') and w2 
(x,x') are very simple. However,  the fundamenta l  solution 
w0 (x,x') of  the linear operator L0 is not only much more 

Fig. 1. The two solutions of example 1 in case ot = 1.0. Curve 1: 
solution s~(x,l.0); Curve 2: solution sin(x); Centered symbol: 

exact values of sin(x). 

1 

1 2 ,'3 4 5 6 

X 

Fig. 2. The solutions s l (x,o~) for example I (1 -~ o~ --< 1000). 
Curve l:s~(x,1); Curve 2: sl(x,2); Curve 3: sl(x,3); Curve 4: 
s~(x,5): Curve 5: sdx,25); Curve 6: s~(x,1000); Centered 

symbol: S(x). 

complex but also unfamil iar  to many  researchers. Also, it is 
' s ingular '  at x = 0. 

For the sake of numerical  domain  integral, we divide 
[0,27r] into N equal sub-domains .  Firstly, we select N = 
250, k = 0.025, o~ = 1.0 and use the first-order 
formulat ion.  Two different initial solutions, Uo(x) = O, 
Uo(x) = 0.25x(27r - x), and two different values of/32, /32 
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Table 1. CPU and iterative t imes in case a = 1 (Example  1) 
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82 Uo(x) = 0 Uo(x) = 0.25x(2z - x) Solution 

Iterative times CPU (s) Iterative times CPU (s) 

MODE 0 
MODE I 0.1 
MODE 1 0.9 
MODE 2 0.1 
MODE 2 0.9 

246 1603 298 1941 sin(x) 
357 346 357 346 s l(x, 1.0) 
364 350 391 376 s l(X, 1.0) 
354 312 348 308 s t(x,l.0) 

53 50 109 121 sin(x) 

Table 2. CPU and iterative t imes for different ~ (Example  1) 

k Iterative times CPU (s) 

2 0.025 156 139 
3 0.025 152 135 
5 0.0125 149 133 

25 0.0025 432 381 
100 0.00125 136 122 

1000 0.000125 152 136 

= 0.1,/32 = 0.9, are used respectively, and the correspond- 
ing CPU and iterative times are given in Table 1. Obviously, 
sin(x) is a solution of  Example 1 for any values of  c¢. But, 
there exists another solution for each et, which we denoted 
as s~ (x,a). The two different solutions for c~ = 1.0 are 
shown as Fig. 1. According to Table 1, MODE 1 and 
MODE 2 need much less CPU to obtain convergent results 
than MODE 0, although MODE 1 (/32 = 0.1,/32 = 0.9) and 
MODE 2 (/32 = 0.1) need more iterations. This is mainly 
because MODE 1 and MODE 2 use simpler linear operators 
L L and L 2, respectively, and the corresponding fundamental 
solutions Wl (x,x') and ~o2 (x,x') are much simpler so that 
much less CPU is needed for the computation of  them. It is 
interesting that MODE 2 (/32 = 0.9) needs not only much 
less CPU but also less iterative times than MODE 0 for the 
corresponding initial solutions and numerical parameters 
mentioned in Table 1. It means that, for Example 1, the 
simpler linear operator L2(U) = Uxx + 0.9U is much 
better than Lo(U) = x 2 U ~  + xUx + (x 2 - 1) U itself, no 
matter from the view points of  CPU or iterative times. 

In case o~ -- 1.0, there exist two different solutions, one in 
sin(x), another is s~ (x,l.0), shown as Fig. 1. It is interesting 
that MODE 1 and MODE 0 can give only one kind of  solu- 
tion, sffx, l.0), for the two different initial solutions. But 
MODE 2 in c a s e / 3 2  = 0.1 and/32 = 0.9 can give respectively 
two different solutions for the two different initial solutions 
considered in Example 1. It 's interesting that, for Example 
1, the simpler linear operator /%2 c a n  give more kinds of  
solutions than the linear operator L0. 

Because sin(x) is a common solution of  Example 1 for all 
~, we are more interested in the solution sffx,t~). Using 
MODE 2 (/32 = 0.1, N = 250) and smaller values of  k, we 
obtain the convergent results of  sl(x,ot) for 1 --< ct --< 1000, 
shown as Fig. 2. Here, we apply the first-order formulations, 
i.e., M = 1; and U0 (x) = 0.0 is firstly used as the initial 

solution for c~ = 2, then the corresponding convergent result 
sffx,2) is used as the initial solution for c~ = 3, and so on. 
The corresponding CPU and iterative times are given in 
Table 2. It is interesting that sffx,1000) is very close to 
the function 

sin(x) when x ~ [0,7r/2], 

5(x) = 1.0 when x ~ [7r/2, 3r/2],  (31) 

s in(27r-x)  when x ~ [37r/2,27r], 

shown as Fig. 3. This is reasonable. Obviously, the larger ct 
becomes, the stronger the nonlinearity of  the eqn (18) is. 
When the value of  c~ tends to infinity, the eqn (18) tends to 
the following equation 

U 2 "q- U 2 ~--- 1, x E [0, 27r], (32) 

with the two boundary conditions U(0) = U(27r) = 0. 
Obviously, 5(x) is one of  the solutions of  above first- 
order nonlinear differential equation. So, we have reason 
to believe that the s fix,c0 (a  > 0) we have obtained in this 
paper is indeed the solution of  the Example 1. It illustrates 
that, applying the proposed BEM by means of  a much 
simpler linear operator, we can indeed obtain all solutions 
of  the Example 1 for all values of  ct, even if ct is very large 
which is corresponding to a quite strong nonlinearity. 

In case N = 500, MODE 1 and MODE 2 can give con- 
vergent results which agree very well with those obtained in 
case N = 250, but MODE 0 diverges. This may be mainly 
because the fundamental solution O~o(X,X') is singular at x = 
0. If  only from the view point of  this, the linear operator L0 
is the worst among these three operators. 

The above simple Example illustrates that the traditional 
BEM, which simply treats the nonlinear parts as the inho- 
mogeneities and the linear parts as the linear operator and 
then find out the corresponding fundamental solution of  this 
linear operator L0, is only a special case of  the proposed 
BEM. The linear operator L0 has now no special meaning at 
all. It is only one of  the many possible linear operators 
suited to the proposed BEM and is often the worst one. In 
most cases, other simple linear operators, if selected prop- 
erly, need less CPU and sometimes even less iterative times 
than L0, as illustrated by Example 1. This is reasonable, 
because the properties of  nonlinear differential equations 
are not strongly dependent on the corresponding linear 
operator L0 even if L0 exists. So, we have no reason to 
believe that the linear operator L0, which has special 
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Table 3. lteratives times, CPU and values of ?~ for Example 2 

(3/ /32 ----- 0.1 

lterative limes CPU (s) 

/3: = 0.9 

lterative times CPU (s) 

0 0.975 47 48 19 20 
_+ 0.25 0.5 3 5 16 Ig 
_+ 0.50 0.025 9 II 25 27 
+ 5.0 0.025 96 95 I l l  108 
_+ 100.0 0.0025 238 231 248 240 
-+ 1000 0.00025 248 248 322 319 

1.0 

0.5 

0 . 0  , , , , , ,  . . . . . . . . . . . . . . . . . . . . . . . . . . .  i , i ,  
1 2 3 4 

× 

Fig. 3. The comparisons ors(x) with s~(x,  1000). 

meaning and is very important for the traditional BEM, is 
better than other simple linear operators L. The success of  
the traditional BEM in the limited number of nonlinear 
problems means ONLY that L0 can be used sometimes as 
one proper linear operator suited to Boundary Element 
Method, but does not mean that L0 is the only one and is 
the best one. 

3.2 Example  2 

As the second example, let us consider a nonlinear problem 
which does NOT contain any linear operators at all: 

2W~, cos(W,x) + oe(W{ + W 2) = oe - sin(x) cos(sin(x)), 

x E  [0,2rr], o ~ E R ,  (33) 

with the two boundary conditions W(0) = W(27r) = 0. 
In this example, we apply the linear operator 

£~(W)=W~-~2W, (/3 > 0), 
and also the corresponding fundamental solution 

~t(x,x')= - 2~e 

which have been described in the Example 1. Similarly, 
we can obtain the corresponding high-order iterative 
formulations 

L x",v);,,l(x) 
W k + t ( x ) = W k ( x ) +  ~ , ( k = 0 , 1 , 2  . . . .  ), 

m = [ 

(34) 

1 . 2 5  

5 6 

0 . 7 5  

0 . 2 5  

- 0 . 2 5  

- 0 . 7 5  

- 1 . 2 5  

8 

7 6 

4 

. . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  ~ . . . . . . . . .  i , ,  
0 1 2 3 4 5 6 

X 

Fig. 4. The solutions s2(x,o0 for Example 2 ( -  1000 < o~ -< 1000). 
Curve 0: s2(x,O); Curve 1:s2 (x,0.25); Curve 2:s2 (x,0.50); Curve 
3:s2 (x,5.00); Curve 4:s2 (x, 1000); Curve 5:s2 (x, - 0.25): Curve 
6:s2 (x, - 0.50); Curve 7:s2 (x,  - 5.00); Curve 8:s2 (x,  - 1000). 

where, vl,ml(x) satisfies the following linear differential 
equation 

L L ( V ~ ( n l ) = f , , ( x ) ,  x ~ [ 0 , 2 ~ r ] ,  ( m = 1 , 2 , 3 . . . ) ,  (35) 

with the two boundary conditions 

V~)ml(0) = V~,"l(Zr) = 0. (36) 

Here, 

./i (x) = oe - sin(x) cos(sin(x)) - 2W~x cos(W~x) 

- o~(W~ + W2), (37) 

./2(x) = 2  {L, (V0f'l) - 2[cos(W,.x) - W~.~ sin(W~:,.)] ~ . 1  

I- dv l l l  
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Table 4. Iterative times and CPU of high-order formmtatlons for Example 2 
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Iterative times CPU (s) Iterative times CPU (s) 

First-order 47 48 19 20 
Second-order 35 71 10 23 
Third-order 20 60 7 21 

1.25 

0.75 

0.25 

- 0 . 2 5  

- 0 . 7 5  

- -1 .25 

2 

/ 

1 2 3 4 5 6 

X 

Fig. 5. The comparisons of s2 (x, - 1000) with _+ S(x). Curve 1 : 
s2(x,1000); Curve 2: s2(x, - 1000); Centered symbol: _+ 5(x). 

0.1 

n~ 

o 
n~ 
r~ 
Ld 

0.01 

1 

3 

0.001 , , , = 

0 10 20 30 40 50 

ITERATIVE TIMES 

Fig. 6. The error-curve in iteration for Example 2. B 2 = 0.1, ct = 
O, Wo(x) = 0, X = 0.975; Curve 1 : RMS 1 of first-order formula- 
tion; Curve 2: RMS~ of second-order formulation; Curve 3:RMS1 

of third-order formulation. 

d2 V0 [21 
A(x)  = 3 LI(V0 I21) - 2 [ c o s ( W x x ) -  Wxx sin(Wxx)] dx 2 

/ d2Vi i i \  2 
+ 2 [ 2 s i n ( W x O + w ~ c o s ( W x x ) ] ~ Z - - ~ )  

-  [WxT+ - -  +WVto21 

(39) 

Similarly, we also divide [0,27r] into N equal subdomains 
(N = 250) and use Wo(x) = 0.0 as the initial solutions for 
all values of  ~. We also use two different values of/32, i.e., 
/32 = 0.9, respectively, for the selected linear operator L j. 

The iterative times, CPU and the values of  X for a = 0, 
_+0.25, _+ 0.50, +_ 5.0, _ 100, +__ 1000 are given in Table 
3. The corresponding convergent results are shown as Fig. 4, 
from which we can see clearly the continuous deformation 
of  the solution about the values of  ~, which we denote as 
SE(X,~). Obviously,  solution s2(x,0) is similar to sin(x), 
although certainly sin(x) is now not a solution. It is inter- 
esting that the two solutions s 2 ( x , 1 0 0 0  ) and s2(x, - 1000) 
are very close to the function - 5(x) and 5(x), respectively, 
shown as Fig. 5. This is reasonable, because +- S(x) are 

obviously the two solutions of Example 2 in case that let[ 
tends to infinity. So, we have reason to believe that what we 
have obtained are indeed the  solutions of  Example 2. Note 
that the two solutions s2(x, + ct) have a kind of  symmetry. In 
fact, we can prove that, if s2(x,cO is a solution of  Example 2, 
- -s2(27r  --  x, --  or) must be also a solution. It shall be empha- 
sized that the Example 2 does  NOT contain any linear dif- 
ferential terms at all! But, by means of  the proposed new 
BEM, we can still obtain very good numerical approxima- 
tions for Example 2 for any value of  a ,  even if c~ is very 
large, corresponding to a very strong nonlinearity. This 
means that the proposed BEM is indeed effective for quite 
general operators. 

Until now, we have used in this paper only first-order 
formulation (M = 1). How about the high-order formula- 
tions? In case et = 0 and using Wo(x) = 0, X = 0.975, we 
have applied the second- and third-order formulations in 
Example 2, respectively. The corresponding iterative 
times and CPU are given in Table 4, and the error-curves 
a b o u t  R M S I  in iterations are shown as Fig. 6 (/32 = 0.1) and 
Fig. 7 (/32 = 0.9), respectively. It seems that higher-order 
formulations need fewer iterations but generally more CPU 
for the same value of  ~. Fig. 6 and Fig. 7 illustrate that the 
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Fig. 7. The error-curve in iteration for Example 2. ~: = 0.9, c~ : 
O, Wo(x) = 0, X = 0.975; Curve 1 : RMS~ of first-order formula- 
tion; Curve 2: RMSI of second-order formulation; Curve 3: RMS~ 

of third-order formulation 

higher-order lormulation is corresponding to a faster 
convergence. This can be also understood, because the 
high-order formulations are based on the theory of  Taylor ' s  
series. 

At last, let us compare the proposed BEM with that given 
by Tosaka 14 in 1988. Tosaka used a simple one-dimensional 
nonlinear equation 

U~.~ = o~2 U2, x ~ [0, 11, (40) 

which has the two boundary conditions U(0) : 1, U(1) = 0.25, 
to illustrate his basic ideas. Simply to say, he divided the 
domain [0,1 ] into N subdomains and then linearized the non- 
linear eqn (40) in each subdomain. As a result, a set of  2N 
linear algebraic equations must be solved in each iteration, 
which certainly needs much CPU in case N is large, for 
instance, N = 250 or N = 500 as used in this paper. Using 
MODE 1 in case/32 = 1, we have easily obtained the con- 
vergent results ofeqn (40) for 1 -< 2 _< l0 s (Tasaka gave the 
results for 6 --< o~ 2 -< 104). However, we need only solve a set 
of  TWO linear algebraic equations similar to (29) and (30) 
for each iteration by means of  the proposed BEM. Therefore, 
the BEM proposed in this paper seems much more efficient 
than that described by Tosaka j4, because CPU is NOT directly 
proportional to 8N 3 for solving a set of  2N linear algebraic 
equations but is only directly proportional to N 2 for the 
corresponding integral needed for the proposed BEM. 

In this paper, we use COMPAQ Prolinea 4/50 as our 
computational tool. And double precision variables are 
used. The CPU given in this paper contains time for reading 
and writing necessary data from or to hard disk. We use, in 

this paper, two kinds of convergence criterion 
/ 

= I/~-.N'=o{A[U(xi)_ ] 
RMSI V N +  1 < 10 (41) 

and and 

t / ~.iN:ol6u(xi)l 2 
RMS2 = V -N-+-] < 10 -5.  (42) 

Iteration will be stopped if either of  them is satisfied. 

4 C O N C L U S I O N  

In this paper, the basic ideas published in the reference s are 
greatly generalized to give a kind of  new Boundary Element 
Method (BEM) for quite general nonlinear differential 
operators which may NOT contain any linear terms at all. 
This kind of  new BEM has the following advantages: 

(A) it can be used to solve those nonlinear problems which 
does NOT contain any linear terms at all; 

(B) in any case, we have great freedom to select a sort of 
proper and simple linear operator L whose fundamen- 
tal solution is familiar to us, especially when L0 does 
not exist, or when L0 is so complex that its corre- 
sponding fundamental solution is unknown or difficult 
to obtain; 

(C) the traditional BEM is only a special case of the 
proposed BEM so that there exists a kind of  logical 
continuation between the traditional and the proposed 
BEM. This kind of logical continuation has been 
proved again and again to be very important in 
many fields of  mathematics. 

Two simple examples are applied to illustrate the effec- 
tiveness of  the proposed method. The Example 1 indicates 
that, the linear operator L0, which is corresponding to the 
linear terms of  the considered nonlinear problem and is very 
important for the traditional BEM, has now no special 
meaning at all - it is nothing but only a very common 
one of many proper linear operators suited to the proposed 
BEM and is mostly not the best. The Example 2 illustrates 
that the proposed BEM can give very good numerical 
approximations of  a nonlinear problem which does not con- 
tain any linear operators at all, even in case that the non- 
linearity is very strong. Therefore, these two examples,  
although very simple, illustrate that the proposed BEM is 
indeed effective. Other multi-dimensional examples have 
been done as well, e.g. the reference 8. 

Note that the proposed BEM is in principle based on 
homotopy technique, which can generally give us greater 
fi'eedom in selecting an initial solution. Now, as mentioned 
above, we have also great freedom in selecting a proper, 
simple linear operator, whose fundamental solution is famil- 
iar to us, for the proposed BEM. However, how can we use 
this kind of  freedom? That is to say, how can we know a 
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selected linear operator is proper and is better than another 
one? Certainly, for any a nonlinear problem, there should 
exist many proper linear operators suited to the proposed 
BEM, all of which would construct a mathematical space .5. 
It seems that there should exist the best linear operator in the 
space .5. But how to find out the best one? Unfortunately, we 
know now nearly nothing about these interesting questions. 
Therefore, some deep mathematical research is necessary. 
On the other hand, although the two examples have indeed 
illustrated the effectiveness of  the proposed BEM, they 
seem to be too simple (a more complex example about 2D 
viscous flow has been given in the reference8). So, the pro- 
posed BEM must be applied to solve more complex 2D and 
3D nonlinear problems in engineering so as to examine and 
improve it. 
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APPENDIX A NOMENCLATURE 

A quite general nonlinear differential 
operator; 

J1 Bessel's function of the first kind; 
L linear differential operator; 
L0 linear differential operator which is cor- 

responding to all linear parts of A; 
nonlinear differential operator which is a 
part of A but does not contain any linear 
operators; 

Nj Bessel's function of the second kind; 
p imbedding parameter; 
Re Reynold' s number; 
S(x) real function defined as expression (33); 
or,/3, ",/parameters; 
I' boundary of the domain f]; 
p radius of convergence; 
~0 fundamental solution for BEM; 
f~ integral domain. 


