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a b s t r a c t

The traditional scaled boundary finite-element method (SBFEM) is a rather efficient semi-
analytical technique widely applied in engineering, which is however valid mostly for lin-
ear differential equations. In this paper, the traditional SBFEM is combined with the homot-
opy analysis method (HAM), an analytic technique for strongly nonlinear problems: a
nonlinear equation is first transformed into a series of linear equations by means of the
HAM, and then solved by the traditional SBFEM. In this way, the traditional SBFEM is
extended to nonlinear differential equations. A nonlinear heat transfer problem is used
as an example to show the validity and computational efficiency of this new SBFEM.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The scaled boundary finite-element method (SBFEM), developed recently by Wolf and Song [1–3], is a novel semi-analytical
method to solve partial differential equations. In the frame of the SBFEM, a scaled boundary coordinate system is introduced.
The weighted residual approximation of finite elements is applied in the circumferential direction, and then the governing par-
tial differential equations are transformed to ordinary differential equations in the radial direction. Those ordinary differential
equations can be solved analytically in the radial direction. Like the boundary element method, only the boundary of the prob-
lem domain is discretized, but no fundamental solution is required. Thus, this semi-analytical method combines the advantages
of the finite element and boundary element methods, and besides, it presents appealing features of its own.

The SBFEM has been used for the problems of elasto-statics and elasto-dynamics, especially for soil-structure interaction
problems in unbounded domains [3,4]. Recently, the SBFEM has been extended to the fluid flow problems [5–8]. Meanwhile,
researchers reported successful algorithms for the coupling of SBFEM with other numerical techniques [9–11] to analyze
geomechanics problems. By coupling the finite element method and the SBFEM, Doherty and Deeks [9] captured the nonlin-
earity of problems in the near field. However, the SBFEM only accurately modeled the linear elastic far field response. It must
be emphasized that, up to now, all problems solved by SBFEM are governed by linear partial differential equations.

The homotopy analysis method (HAM), which is an analytic approach to get series solutions of strongly nonlinear equa-
tions, was first proposed by Liao [12] in 1992. Thereafter, the HAM has been improved step by step [13–19]. Briefly speaking,
by means of the HAM, one constructs a continuous mapping of an initial guess approximation to the exact solution of con-
sidered equations. An auxiliary linear operator is chosen to construct such kind of continuous mapping, and a convergence-
control parameter is used to ensure the convergence of solution series. More importantly, this method enjoys great freedom
in choosing initial guesses and auxiliary linear operators. By means of this kind of freedom, a complicated nonlinear problem
can be transferred into an infinite number of simple, linear sub-problems, as shown by Liao and Tan [17]. Thus, if the SBFEM
is successfully combined with the HAM, it could be extended to many engineering problems governed by nonlinear partial
differential equations. This is the motivation of our present work.
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The aim of this paper is to combine the SBFEM with the HAM and then apply it to solve nonlinear problems. Shortly
speaking, we first transfer an original nonlinear problem into an infinite number of linear sub-problems using the HAM,
and then solve all those sub-problems by the SBFEM. To show its validity, 2D nonlinear Poisson-type problems are solved,
and numerical results demonstrate the efficiency and accuracy of this approach.

2. Theoretical description

2.1. Governing equations

Consider a 2D Poisson equation with a varying conductivity kðx; yÞ, which can be expressed as

r � ½kðx; yÞruðx; yÞ� ¼ f ðx; yÞ; ðx; yÞ 2 X; ð1Þ

under boundary conditions

u ¼ g1ðx; yÞ; ðx; yÞ 2 C1; ð2Þ
@u
@n
¼ g2ðx; yÞ; ðx; yÞ 2 C2; ð3Þ

where r is the Hamilton operator, uðx; yÞ is the dependent variable, the real functions f ðx; yÞ; g1ðx; yÞ and g2ðx; yÞ are pre-
scribed functions or given values, the x and y are spatial coordinates, n denotes the normal to the boundary, X the domain
and C ¼ C1 [ C2 the boundary.

Obviously, Eq. (1) can be rewritten as

kðx; yÞr2uðx; yÞ þ rkðx; yÞ � ruðx; yÞ ¼ f ðx; yÞ; ðx; yÞ 2 X: ð4Þ

Assuming that kðx; yÞ ¼ 1þ uðx; yÞ, i.e., the conductivity is dependent on the unknown uðx; yÞ. Then Eq. (4) becomes

r2uðx; yÞ þ uðx; yÞr2uðx; yÞ þ ruðx; yÞ � ruðx; yÞ ¼ f ðx; yÞ; ðx; yÞ 2 X: ð5Þ

Thus, the 2D nonlinear Poisson-type problems which we will solve are governed by Eq. (5) with the boundary conditions
(2) and (3).

2.2. Homotopy transformation

According to Eq. (5), a nonlinear operator N is defined as follows:

N½U� ¼ r2U þ Ur2U þrU � rU � f ðx; yÞ: ð6Þ

Then Eq. (5) can be written as

N½uðx; yÞ� ¼ 0; ðx; yÞ 2 X: ð7Þ

In the frame of the HAM, we first construct the zeroth-order deformation equation

ð1� qÞL½Uðx; y; qÞ � u0ðx; yÞ� ¼ c0qN½Uðx; y; qÞ�; q 2 ½0;1�; c0 – 0; ðx; yÞ 2 X ð8Þ

with the boundary conditions

Uðx; y; qÞ ¼ g1ðx; yÞ; ðx; yÞ 2 C1; ð9Þ
@Uðx; y; qÞ

@n
¼ g2ðx; yÞ; ðx; yÞ 2 C2; ð10Þ

where c0 is the convergence-control parameter, u0ðx; yÞ is an initial guess of uðx; yÞ; L is the auxiliary linear operator, and
q 2 ½0;1� is called homotopy-parameter, respectively. As q increases from 0 to 1, the solution Uðx; y; qÞ deforms continuously
from the initial guess u0ðx; yÞ to the solution uðx; yÞ of Eqs. (5), (2) and (3).

The homotopy-series solution is given by

uðx; yÞ ¼ u0ðx; yÞ þ
Xþ1
m¼1

umðx; yÞ; ðx; yÞ 2 X: ð11Þ

umðx; yÞ ðm P 1Þ are governed by the so-called mth-order deformation equations

L½umðx; yÞ � vmum�1ðx; yÞ� ¼ c0dmðx; yÞ; ðx; yÞ 2 X; ð12Þ

with boundary conditions

umðx; yÞ ¼ 0; ðx; yÞ 2 C1; ð13Þ
@umðx; yÞ

@n
¼ 0; ðx; yÞ 2 C2; ð14Þ

64 Z. Lin, S. Liao / Commun Nonlinear Sci Numer Simulat 16 (2011) 63–75



Author's personal copy

where

dmðx; yÞ ¼
1

ðm� 1Þ!
@m�1N½Uðx; y; qÞ�

@qm�1

�����
q¼0

ð15Þ

and

vm ¼
0; m 6 1;
1; otherwise:

�
ð16Þ

According to Eqs. (6) and (15), we can obtain

dmðx; yÞ ¼ r2um�1ðx; yÞ þ
Xm�1

j¼0

ujðx; yÞr2um�1�jðx; yÞ þ
Xm�1

j¼0

rujðx; yÞ � rum�1�jðx; yÞ � ð1� vmÞf ðx; yÞ: ð17Þ

Therefore, the original nonlinear problem governed by Eqs. (5), (2) and (3) has been transferred into an infinite number of
linear sub-problems governed by Eqs. (12)–(14).

2.3. Implementation of SBFEM

It should be emphasized that, using the HAM, one has great freedom to choose the auxiliary linear operators and an initial
guess under some basic rules [15,17]. Here, we select r2 as the auxiliary linear operator. Then Eq. (12) can be rewritten as

r2umðx; yÞ ¼ Rmðx; yÞ; ðx; yÞ 2 X; ð18Þ

where

Rmðx; yÞ ¼ vmr2um�1ðx; yÞ þ c0dmðx; yÞ: ð19Þ

That is, the mth-order deformation Eq. (12) becomes a 2D linear Poisson equation and all the linear sub-problems become 2D
linear Poisson-type problems which can be solved by the scaled boundary finite-element method.

To describe the implementation of the SBFEM, the 2D linear Poisson equation is written as

r2uðx; yÞ ¼ Rðx; yÞ in X ð20Þ

with boundary conditions

u ¼ �u on Cu; ð21Þ
@u
@n
¼ �un on Cm; ð22Þ

where Rðx; yÞ is the so-called non-homogeneous term and the overbar denotes a prescribed value. The weak form of the
weighted-residual statement is formulated asZ

X
rT wrudXþ

Z
X

wRdX�
Z

Cm

w�un dC ¼ 0; ð23Þ

where w is the weighting function, and it is the starting point of the derivation of the SBFEM.
In the frame of the SBFEM, a scaled boundary coordinate system is introduced at first. As shown in Fig. 1, the circumfer-

ential coordinate s is anticlockwise along the boundary and the dimensionless radial coordinate n is a scaling factor, defined
as 0 at the scaling centre O and 1 at the boundary S. The two straight sections s ¼ s0 and s ¼ s1 are termed side-faces. If the
boundary is closed, the side-faces will coincide. Thus, the whole solution domain X is in the range of n0 6 n 6 n1 and
s0 6 s 6 s1. Bounded domains containing the scaling centre are modeled by taking n0 ¼ 0 and n1 ¼ 1; whereas, unbounded
domains are modeled by taking n0 ¼ 1 and n1 ¼ 1.

The mapping between the Cartesian coordinate system and this scaled boundary coordinate system is expressed by the
scaling equations

x ¼ x0 þ n � xsðsÞ; y ¼ y0 þ n � ysðsÞ; ð24Þ

where ðx0; y0Þ is the scaling center and xsðsÞ and ysðsÞ are C0 continuous piecewise smooth functions describing the boundary
S in Cartesian coordinates relative to the scaling center. Using conventional techniques the operatorr can be mapped to the
scaled boundary coordinate system as [3]

r ¼ b1ðsÞ
@

@n
þ 1

n
b2ðsÞ

@

@s
; ð25Þ

where b1ðsÞ and b2ðsÞ are dependent only on the definition of the boundary S:
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b1ðsÞ ¼
1
jJj

ysðsÞ;s
�xsðsÞ;s

( )
; b2ðsÞ ¼

1
jJj
�ysðsÞ
xsðsÞ

� �
; ð26Þ

and jJj is the Jacobian at the boundary

jJj ¼ xsðsÞysðsÞ;s � ysðsÞxsðsÞ;s: ð27Þ

In the SBFEM, the unknown variables u at any point ðn; sÞ in the domain are sought in the form

uðn; sÞ ¼ NðsÞaðnÞ; ð28Þ

where NðsÞ is the shape function, the vector aðnÞ is analogous to the nodal values in the standard finite-element method. The
weighting function w can be chosen as the same shape function as (28) by Galerkin approach

wðn; sÞ ¼ NðsÞwðnÞ ¼ wðnÞT NðsÞT : ð29Þ

Substituting Eqs. (25), (28) and (29) into Eq. (23) and integrating the domain integrals containing wðnÞ;n by parts with respect
to n using Green’s theorem, and noting that dX ¼ jJjndnds, yields

qðn1Þ ¼
Z

S
NðsÞT �unðn1; sÞn1 ds; ð30Þ

qðn0Þ ¼ �
Z

S
NðsÞT �unðn0; sÞn0 ds; ð31Þ

E0n
2aðnÞ;nn þ ðE0 þ ET

1 � E1ÞnaðnÞ;n � E2aðnÞ þ FðnÞ ¼ 0; ð32Þ

where

qðnÞ ¼ E0naðnÞ;n þ ET
1aðnÞ; ð33Þ

FðnÞ ¼ nFsðnÞ � n2FbðnÞ; ð34Þ
B1ðsÞ ¼ b1ðsÞNðsÞ; ð35Þ
B2ðsÞ ¼ b2ðsÞNðsÞ;s; ð36Þ

E0 ¼
Z

S
B1ðsÞT B1ðsÞjJjds; ð37Þ

E1 ¼
Z

S
B2ðsÞT B1ðsÞjJjds; ð38Þ

E2 ¼
Z

S
B2ðsÞT B2ðsÞjJjds; ð39Þ

FbðnÞ ¼
Z

S
NðsÞT RjJjds; ð40Þ

and

FsðnÞ ¼ Nðs0ÞT �unðn; s0ÞjJðs0Þj þ Nðs1ÞT �unðn; s1ÞjJðs1Þj: ð41Þ

Eq. (32) is the so-called scaled boundary finite-element equation. By introducing the shape function, the Poisson equation
has been weakened in the circumferential direction in a finite element manner, but remains strong in the radial direction.
Thus, the governing partial differential equation is transformed to an ordinary matrix differential equation in the radial
direction. The rank of matrices E0;E1;E2 and vectors aðnÞ; FðnÞ; FbðnÞ; FsðnÞ is N (where N is the number of nodes in the bound-
ary S). The solution technique of the ordinary matrix differential equation is described in Appendix A.

Fig. 1. The scaled boundary coordinate definition.
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Thus, when a proper initial guess u0 is chosen, we can gradually solve the mth-order deformation equations by means of
SBFEM as m increases. It must be noted that the right-hand side term dm of the mth-order deformation Eq. (12) becomes
more and more complicated as m increases. It means that the non-homogeneous term FðnÞwill become more and more com-
plicated. This will result in a significant reduction in computational efficiency. To overcome this drawback, Chebyshev inter-
polation is employed to obtain a polynomial approximation PnðnÞ of degree n to FðnÞ, where n is the highest order of
Chebyshev polynomials. Replacing FðnÞwith PnðnÞ, we can solve the scaled boundary finite element equations with high effi-
ciency. For details of Chebyshev interpolation, please refer to [20].

2.4. Optimal c0

The Mth-order approximation of uðx; yÞ is given by

~uMðx; yÞ ¼ u0ðx; yÞ þ
XM

m¼1

umðx; yÞ: ð42Þ

Note that, ~uMðx; yÞ is not only dependent upon x and y, but also upon the parameter c0. Recently, some researches [19,21]
have been done to find out the optimal convergence-control parameter c0 to get a faster convergent series solution.

At the Mth-order approximation, the exact square residual error is defined as follow:

DM ¼
Z

X
ðN½~uMðx; yÞ�Þ2 dX ¼

Z n1

n0

Z s1

s0

ðN½~uMðn; sÞ�Þ2njJjdsdn ¼
Z n1

n0

Z s1

s0

Ef ðn; sÞdsdn; ð43Þ

where

Ef ðn; sÞ ¼ ðN½~uMðn; sÞ�Þ2njJj: ð44Þ

However, a large amount of CPU time is needed to calculate the exact residual error DM , especially for high order of approx-
imation. Thus, to decrease the CPU time, the so-called averaged residual error is defined by

EM ¼
1

I � J
XI

i¼0

XJ

j¼0

Ef ðn0 þ iDn; s0 þ jDsÞ; ð45Þ

where Dn ¼ ðn1 � n0Þ=I and Ds ¼ ðs1 � s0Þ=J.
EM is the function of the unknown convergence-control parameter c0. Obviously, the more quickly EM decreases to zero,

the faster the corresponding homotopy-series solution converges. For a given M, the corresponding optimal values of the
convergence-control parameter c0 are given by the minimum of EM , corresponding to an algebraic equation

dEM

dc0
¼ 0: ð46Þ

3. Numerical examples

To demonstrate the validity of the homotopy-based scaled boundary FEM, assume that the solution of Eq. (5) is exactly
equal to a prescribed function �uðx; yÞ. And then the non-homogeneous term f ðx; yÞ can be determined by substituting the
exact solution into Eq. (5). Meanwhile, the functions g1ðx; yÞ and g2ðx; yÞ can be set according to �uðx; yÞ. In this way, we
can compare our numerical results with the known exact solution. All of our calculations were done on a laptop PC with
a 2.49 GHz CPU and 2 GB RAM.

3.1. For a bounded domain

First of all, we consider the nonlinear 2D Poisson equation (5) defined in a unit bounded domain X ¼ fðx; yÞ : x2 þ y2
6 1g

with the Dirichlet-type boundary condition uðx; yÞ ¼ �gðx; yÞ on its boundary C. Let �uðx; yÞ ¼ x2 þ y2 be the solution of Eq. (5),
then we have f ðx; yÞ ¼ 4þ 8ðx2 þ y2Þ and �gðx; yÞ ¼ 1.

Due to the symmetry, only one quarter of this problem is modeled, as illustrated in Fig. 2. The boundary condition re-
mains the same as uðx; yÞ ¼ g1ðx; yÞ ¼ 1 on C1, but the boundary condition u;n ¼ g2ðx; yÞ ¼ 0 is enforced on C2 due to the sym-
metry, where the comma in the subscript designates partial derivative with respect to the variable following the comma. The
initial guess is chosen as u0ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, which satisfies the boundary condition automatically. The scaling centre is cho-

sen at the original of the Cartesian coordinates, and then the boundary C2 is the so-called side-faces which need not to be
discretized. The boundary C1 is discretized with three-noded quadratic elements. For a quarter unite circle, we have

xsðsÞ ¼ cosðsÞ; ysðsÞ ¼ sinðsÞ; ð47Þ

where s is in the range of ½0;p=2�. One kind of mesh is constructed by binary subdivision of the boundary C1, i.e. the mesh
consists of two scaled boundary elements, as shown in Fig. 2. To calculate the averaged residual error EM (45), we use I ¼ 20
and J ¼ 20.
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Firstly, let n, the highest order of Chebyshev polynomials, equal to 10. The curves of logð
ffiffiffiffiffiffi
EM
p

Þ versus c0 at different order
of approximation M ¼ 4; 8; 12; 16 and 20 are shown in Fig. 3, which indicate that the optimal value of c0 is about -0.60. In
case of n ¼ 20, the optimal value of c0 is close to �0.63, as shown in Table 1. For different values of n, the optimal value of c0

changes very little. As long as the choice of c0 is near the optimal value, the homotopy-series solution could converge faster.
For the sake of comparison, c0 is set as �0:6. The variations of the square root of Em and the CPU time with the order of

approximation M at different n ¼ 10;15;20;25 are plotted in Figs. 4 and 5, respectively. Fig. 4 illustrates that, for a given n,
the value of EM decreases as M increases, but when M increases to a certain value Mp; EM is almost the same. The lowest value
of EM is denoted as E�M , which depends on n. The larger value of n, the smaller the value of E�M . In Fig. 5, for a given order of
approximation M, more CPU time is needed as n increases. It means that the highest order of Chebyshev polynomials affect
not only the accuracy but also the computational efficiency.

As shown in Figs. 4 and 5, in the case of n ¼ 25 and M ¼ 100, the CPU time is about 9236 seconds with
ffiffiffiffiffiffi
EM
p

¼ 3:6� 10�17;
in the case of n ¼ 10 and M ¼ 20;

ffiffiffiffiffiffi
EM
p

has decreased to 1:1� 10�5, and the CPU time is about 137 s, less than 3 min.
In the frame of the SBFEM, properties of the standard finite-element method are maintained in the circumferential direc-

tion, but the analytical solution is provided in the radial direction. As long as the high precision is ensured in the radial direc-
tion and the number of surface elements is large enough in the circumferential direction, we could guarantee the accuracy of
the numerical solution in the whole domain. In this example, since the boundary S is a quarter of circle and the exact solution
on any path from the scaling centre to the boundary is the same, the impact from the discretization of the boundary can be
ignored. So we only need to compare the numerical approximations with the exact solution in a given radial path. As shown
in Figs. 6 and 7, the higher the order of approximation, the less the absolute error between the numerical approximation and
the exact solution.

Fig. 2. Bounded domain.
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versus c0 in the case of n ¼ 10 for the bounded domain.
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Table 1
Optimal value of c0 in the case of n ¼ 20 for the bounded domain.

Order of approximation M Optimal value of c0 Minimum value of
ffiffiffiffiffiffiffi
EM
p

4 �0.585 4.40E � 02
6 �0.604 1.24E � 02
8 �0.616 3.90E � 03

10 �0.620 1.29E � 03
12 �0.623 4.39E � 04
14 �0.625 1.50E � 04
16 �0.627 5.23E � 05
18 �0.628 1.84E � 05
20 �0.630 6.52E � 06

M
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Fig. 4. The square root of EM versus M in the case of c0 ¼ �0:6 for the bounded domain.
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Fig. 5. The CPU time versus M in the case of c0 ¼ �0:6 for the bounded domain.
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3.2. For an unbounded domain

Secondly, the nonlinear 2D Poisson equation (5) defined in an unbounded domain X ¼ fðx; yÞ : x2 þ y2 P 1g with the
Dirichlet-type boundary is considered. Let the exact solution �uðx; yÞ equal to 1=ðx2 þ y2Þ, then we have f ðx; yÞ ¼ 4ðx2þ
y2 þ 2Þ=ðx2 þ y2Þ3 and gðx; yÞ ¼ �gðx; yÞ ¼ 1.

Similarly, due to the symmetry, only one quarter of this problem is modeled, as illustrated in Fig. 8. The boundary con-
dition remains the same as uðx; yÞ ¼ g1ðx; yÞ ¼ 1 on C1, and the condition u;n ¼ g2ðx; yÞ ¼ 0 is enforced on C2 due to the sym-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ

M
u

exactsolution

M=0 (initialguess)

M=1
M=2
M=6

n = 20 c = -0.60

~

Fig. 6. The approximation ~uM versus n in the case of n ¼ 20 and c0 ¼ �0:6 for the bounded domain.
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Fig. 7. The error (j~uM � uexact j) versus n in the case of n ¼ 20 and c0 ¼ �0:6 for the bounded domain.

Fig. 8. Unbounded domain.
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metry. The initial guess is chosen as u0ðx; yÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Since the boundary S is a quarter of unit circle, the scaled bound-

ary transformation is the same as the bounded domain, but the scaling factor n varies from 1 to þ1. In order to calculate EM ,
we use Dn ¼ 0:1, I ¼ 100 and J ¼ 20 in Eq. (45). So the optimal convergence-control parameter c0 can be calculated by Eq.
(46).

As shown in Table 2, in the case of n ¼ 10, the optimal value of c0 is about �0.59. Fig. 9 shows that if c0 is chosen near the
optimal value, EM decreases faster as the order of approximation M increases.

The value of the highest order of Chebyshev polynomials has a great influence on the computational efficiency and accu-
racy, as shown in Figs. 10 and 11. In the case of n ¼ 20 and c0 ¼ �0:6, as M increases to 20, the square root of the averaged
residual error EM decreases to 8:6� 10�7, but the total CPU time is only about 142 s. Similarly, let n equal to 20 and the con-
vergence-control parameter c0 equal to �0.6, then we compare the numerical approximations with the exact solution in a
given radial path. The exact solution uðn; sÞ is equal to 1=n2, which tends to zero as n!1. Figs. 12 and 13 illustrate that the
absolute error between the numerical approximation and the exact solution decreases quickly as M increases.

4. Conclusions

A new approach has been proposed for 2D nonlinear Poisson-type problems by combining the scaled boundary finite-ele-
ment method with the homotopy analysis method. In this approach, the original nonlinear problem is transferred into an
infinite number of linear Poisson-type sub-problems by the HAM, and then all those linear Poisson-type sub-problems
are solved by means of the SBFEM. Numerical examples governed by a 2D nonlinear Poisson equation, including a bounded

Table 2
Optimal value of c0 in the case of n ¼ 10 for the unbounded domain.

Order of approximation M Optimal value of c0 Minimum value of
ffiffiffiffiffiffiffi
EM
p

4 �0.592 2.04E � 03
6 �0.599 7.30E � 04
8 �0.602 2.55E � 04

10 �0.603 8.28E � 05
12 �0.600 2.79E � 05
14 �0.595 1.04E � 05
16 �0.592 4.14E � 06
18 �0.590 1.72E � 06
20 �0.589 7.57E � 07
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Fig. 9. The logarithm of
ffiffiffiffiffiffi
EM
p

versus c0 in the case of n ¼ 10 for the unbounded domain.
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domain and an unbounded domain, are solved by this new approach, respectively. All the numerical results demonstrate the
high efficiency and accuracy of our approach.

Note that the HAM enjoys great freedom in choosing initial guess u0. If the convergence-control parameter c0 is selected
properly, the Mth-order approximation ~uM is better than the free selected initial approximation. So, it can provide us with a
family of iterative formulae.

Clearly, this new approach has great potential to the nonlinear problems. In this paper, we have successfully extended the
SBFEM to solve nonlinear problems. Meanwhile, the idea of the HAM has been further applied to numerical calculation.
Though more research effort is needed to develop and improve this new approach, it may not be far away to apply our ap-
proach to solve more nonlinear engineering problems with increased complexity.
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Fig. 10. The square root of EM versus M in the case of c0 ¼ �0:6 for the unbounded domain.
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Appendix A. Solution technique of SBFEM

By introducing the variable

XðnÞ ¼
aðnÞ
qðnÞ

� �
; ðA:1Þ

Eq. (32) is transformed into the first-order ordinary differential equations

nXðnÞ;n ¼ �ZXðnÞ �
0
FðnÞ

� �
ðA:2Þ

with a Hamiltonian matrix

Z ¼
E�1

0 ET
1 �E�1

0

�E2 þ E1E�1
0 ET

1 �E1E�1
0

" #
: ðA:3Þ

100 101 102 103
0

0.2

0.4

0.6

0.8

1

ξ

Mu
exactsolution

M=0 (initialguess)

M=1
M=2
M=6

n = 20 c = -0.60

~

Fig. 12. The approximation ~uM versus n in the case of n ¼ 20 and c0 ¼ �0:6 for the unbounded domain.

100 101 102 103
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

E
rr

M=4

M=8

M=6

ξ

n= 20 c =-0.60

100 101 102 103
0

1E-06

2E-06

3E-06

4E-06

5E-06

6E-06

7E-06

E
rr

M=16

M=20

M=18

ξ

n=20 c =-0.60
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The eigenvalue problem is formulated as

ZU ¼ �UK ðA:4Þ

with the eigenvalues of the Hamiltonian matrix

K ¼
�K0

K0

� �
; K0 ¼ dkic ðA:5Þ

and the eigenvector matrix partitioned conformably

U ¼
U11 U12

U21 U22

� �
: ðA:6Þ

The real parts of all elements ki are non-positive. The solution of Eq. (A.2) equals

XðnÞ ¼
U11 U12

U21 U22

� �
n�K0

nK0

" #
C1ðnÞ
C2ðnÞ

� �
; ðA:7Þ

where

C1ðnÞ ¼ c1 �
Z n

1
s�1sK0 A12FðsÞds; ðA:8Þ

C2ðnÞ ¼ c2 �
Z n

1
s�1s�K0 A22FðsÞds; ðA:9Þ

c1; c1 are integration constants and

A ¼
A11 A12

A21 A22

� �
¼ U�1: ðA:10Þ

Substituting (A.7) into (A.1) yields

aðnÞ ¼ U11n
�K0 C1ðnÞ þU12n

K0 C2ðnÞ ðA:11Þ
qðnÞ ¼ U21n

�K0 C1ðnÞ þU22n
K0 C2ðnÞ ðA:12Þ

For a bounded domain, aðnÞ at n ¼ 0 must remain finite, leading to C2ðnÞjn¼0 ¼ 0, then

c2 ¼
Z 0

1
s�1s�K0 A22FðsÞds: ðA:13Þ

Substituting (A.13) into (A.9) yields

C2ðnÞ ¼ �
Z n

0
s�1s�K0 A22FðsÞds: ðA:14Þ

And then substituting Eqs. (A.8) and (A.14) into Eqs. (A.11) and (A.12) results in

aðnÞ ¼ U11n
�K0 c1 þ

Z 1

n
s�1sK0 A12FðsÞds

� 	
�U12n

K0

Z n

0
s�1s�K0 A22FðsÞds ðA:15Þ

and

qðnÞ ¼ U21n
�K0 c1 þ

Z 1

n
s�1sK0 A12FðsÞds

� 	
�U22n

K0

Z n

0
s�1s�K0 A22FðsÞds: ðA:16Þ

Note that c1 is determined by the boundary condition

aðnÞjn¼1 ¼ U11c1 �U12

Z 1

0
s�1s�K0 A22FðsÞds ðA:17Þ

or

qðnÞjn¼1 ¼ U21c1 �U22

Z 1

0
s�1s�K0 A22FðsÞds: ðA:18Þ

For an unbounded domain, aðnÞ as n!1 must remain finite, leading to C1ðnÞjn!1 ¼ 0. The solution procedure is similar,
please refer to [3].
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