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Abstract In scientific computing, it is time-consuming to calculate an inverse oper-
ator A −1 of a differential equation A ϕ = f , especially when A is a highly
nonlinear operator. In this paper, based on the homotopy analysis method (HAM), a
new approach, namely the method of directly defining inverse mapping (MDDiM), is
proposed to gain analytic approximations of nonlinear differential equations. In other
words, one can solve a nonlinear differential equation A ϕ = f by means of directly
defining an inverse mapping J , i.e. without calculating any inverse operators. Here,
the inverse mapping J is even unnecessary to be explicitly expressed in a differ-
ential form, since “mapping” is a more general concept than “differential operator”.
To guide how to directly define an inverse mapping J , some rules are provided.
Besides, a convergence theorem is proved, which guarantees that a convergent series
solution given by the MDDiM must be a solution of problems under consideration.
In addition, three nonlinear differential equations are used to illustrate the validity
and potential of the MDDiM, and especially the great freedom and large flexibility
of directly defining inverse mappings for various types of nonlinear problems. The
method of directly defining inverse mapping (MDDiM) might open a completely
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new, more general way to solve nonlinear problems in science and engineering, which
is fundamentally different from traditional methods.

Keywords Homotopy analysis method · Analytical approximation · Nonlinear
differential equation · Direct definition of inverse mapping

1 Motivation

For a differential equation A ϕ = f , where A is a differential operator and f is a
known function, one can quickly gain its common solution u = A −1f , when the
inverse operator A −1 is known,or if it is easy to gain. Unfortunately, lots of CPU
times (i.e. a large amount of money) are often consumed to calculate inverse operator
A −1 in general.

Can we solve nonlinear differential equations by means of directly defining an
inverse mapping, i.e. without calculating any inverse operators? If so, lots of CPU
time (and money) can be saved. This is the motivation of this work.

Traditionally, perturbation techniques [1] are widely used to gain analytic approx-
imations of a nonlinear differential equation A ϕ = f . If there exists a small physical
parameter ε, and besides if the nonlinear operator A contains a linear ones, i.e.
A = L + N , one can express

ϕ = ϕ0 + ϕ1ε + ϕ2ε
2 + · · ·

and transfer the original nonlinear equationA ϕ = f into an infinite number of linear
sub-problms

L [ϕ0] = f, L [ϕm] = Qm(ϕ0, ϕ1, · · · , ϕm−1), m = 1, 2, 3, · · · ,

where Qm is dependent upon the known terms ϕ0, ϕ1, · · · , ϕm−1 and thus is known.
Note that these linear sub-problems have a close relationship with the original equa-
tion: they use the same linear operatorL that is the linear part of the original equation
A ϕ = f . In applied mathematics, there exist many methods that transfer a nonlinear
problem into a series of linear sub-problems. Traditionally, these linear sub-problems
often have rather close relationship with the original ones, but are often difficult to
solve, because it is generally time-consuming to obtain an inverse operator even for
a linear equation. Sometimes, the linear part even does not contain the highest order
of derivatives so that the linear sub-problems become “singular” since there are more
boundary/initial conditions. It is even worse, when A does not contain any linear
parts at all! This is mainly because perturbation techniques and other traditional ana-
lytic approximation methods can not provide us freedom to choose the related linear
operators of linear sub-problems, which determine their equation-types.

Fortunately, we have such kind of freedom in the frame of the Homotopy Analy-
sis Method (HAM) [2–6], an analytic approximation technique for highly nonlinear
problems. Based on homotopy, a basic concept in topology about continuous vari-
ation, the HAM can easily transfer a nonlinear equation into an infinite number
of linear sub-problems. Compared to perturbation techniques and other traditional
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analytic methods, the HAM has some advantages. First of all, the HAM can trans-
fer a nonlinear problem into an infinite number of linear sub-problems without
any small/large physical parameters. In other words, the HAM works even if there
do not exist any small/large physical parameters in governing equations and ini-
tial/boundary conditions! Secondly, the HAM provides us great freedom to choose
the equation-type of the linear sub-problems, i.e. the freedom to choose an auxiliary
linear operator L for linear sub-problems, even if the original nonlinear operator A
does not contain any linear parts, since we have great freedom in the frame of the
HAM to construct different homotopies (or variations). Especially, unlike perturba-
tion techniques and other analytic methods, the HAM provides us a convenient way
to guarantee the convergence of solution series by means of introducing the so-called
“convergence-control parameter” into the solution series. In addition, many tradi-
tional analytic approximation methods, such as the Adomian Decomposition Method
[7], Lyapunov’s artificial small parameter method and so on, are only special cases
of the HAM, as pointed out by Liao [3, 4]. Note that the so-called homotopy per-
turbation method (HPM) [8] and variational iteration method (VIM) [9] (both of
them were proposed 7 years later than the HAM [2]), are also special cases of the
HAM, as pointed out by Sajid et al. [10] and Van Gorder [11]. Even the famous
Newton’s iteration formula and Euler Transform can be derived in the frame of the
HAM (see Chapters 2 and 5 of [4]). So, the HAM has general meanings. With these
advantages, the HAM has been widely applied to solve nonlinear problems in lots
of fields [3–6, 12–22]. For example, the HAM was successfully applied to give, for
the first time, the theoretical prediction of the so-called steady-state resonant waves
(with time-independent spectrum) in deep and finite depth of water [23–25] for full
wave equations, which were confirmed in 2015 by the physical experiments [26]. For
details, please refer to Liao et al. [27]. This illustrates the potential and novelty of the
HAM, since a truly new method should bring us something new and different!

Here, it should be emphasized that the HAM provides us great freedom to choose
the equation-type and auxiliary linear operator L of the linear sub-problems. Such
kind of freedom is so large that, in the frame of the HAM, a 2nd-order Gelfand equa-
tion can be solved very easily by means of transferring it into an infinite number
of 4th-order (two-dimensional) or 6th-order (three-dimensional) linear differential
equations, and the convergent series solutions were in good agreement to numerical
ones, as illustrated by Liao and Tan [28]. Note that it was traditionally believed that
a 2nd-order differential equation could be replaced only by an infinite number of lin-
ear differential equations at the same order, if perturbation techniques [1], Adomian
DecompositionMethod [7] and other traditional methods are used. So, Liao and Tan’s
approach [28] is difficult to understand from the traditional viewpoints, although it
works quite well in practice. However, this simple example in [28] reveals something
novel and unusual of the HAM: the HAM can provide us freedom to directly define
the auxiliary linear operator L of linear sub-problems. Obviously, if we can transfer
a nonlinear equation into an infinite number of linear sub-problems whose inverse
linear operators are known or directly defined, it becomes straight-forward to solve
the original nonlinear problem. This is indeed true: in this paper, we generalize the
HAM-based analytic approach in [28] and propose the “method of directly defining
inverse operator” (MDDiM) in the frame of the HAM.
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Can we solve a nonlinear differential equation by means of directly defining an
inverse operator? This is an open question up to now, to the best of our knowledge.
A positive answer is given in the frame of the HAM [2–6] in this paper. The paper
is organized as follows. In Section 2, the method of directly defining inverse map-
ping (MDDiM) and a theorem of convergence are briefly described. In Section 3, we
give the detailed derivation of the MDDiM and prove the theorem of convergence
mentioned in Section 2. In Section 4, three examples are used to illustrate how to
apply the MDDiM to solve nonlinear differential equations. Some discussions and
concluding remarks are given in Section 5.

2 Method of directly defining inverse mapping (MDDiM)

First of all, we briefly describe the basic ideas of the method of directly defining
inverse mapping (MDDiM).

Let us consider a nth-order nonlinear differential equation

N [u(x)] = 0, x ∈ �, (1)

subject to the μ linear boundary conditions

Bi[u] = βi, at x = αi, i = 1, 2, 3, · · · , μ, (2)

where u(x) is a unknown function, x is an independent-variable, � is an interval of
x, N denotes a nonlinear operator, Bi is a linear operator, 1 ≤ μ ≤ n are positive
integers, αi ∈ � and βi (1 ≤ i ≤ μ) are constants, respectively. Note that n = μ for
linear problems, but this is unnecessary for nonlinear ones.

Let
S∞ = {ϕ1(x), ϕ2(x), · · · }

denote a complete set of an infinite number of base functions that are linearly inde-
pendent. All functions that are expressed by S∞ form a set of functions, denoted
by

V =
{+∞∑

k=1

akϕk(x)

∣∣∣∣∣ ak ∈ R

}
, (3)

where ak is a real number. Besides, let

S∗ = {
ϕ1(x), ϕ2(x), · · · , ϕμ

}
denote a set, consist of the first μ simplest base functions of S∞. All functions that
are expressed by S∗ form a set of functions, denoted by

V ∗ =
{

μ∑
k=1

akϕk(x)

∣∣∣∣∣ ak ∈ R

}
. (4)

Assume that u(x) ∈ V and the μ unknown coefficients of the expression

u∗(x) =
μ∑

n=1

an ϕ(x) ∈ V ∗
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can be uniquely determined by the μ linear boundary conditions (2), i.e.

Bi

[
μ∑

n=1

an ϕ(x)

]
= βi, at x = αi, i = 1, 2, 3, · · · , μ.

Then, we define u∗ ∈ V ∗ the primary solution. Write

Ŝ = {
ϕμ+1(x), ϕμ+2(x), · · · } . (5)

All functions that are expressed by Ŝ form a set of functions, denoted by

V̂ =
⎧⎨
⎩

+∞∑
k=μ+1

bkϕk(x)

∣∣∣∣∣∣ bk ∈ R

⎫⎬
⎭ . (6)

Obviously, V = V̂ ∪ V ∗. Similarly, let

SR = {ψ1(x), ψ2(x), · · · } (7)

be an infinite set of base functions that are linearly independent, and all functions
expressed by SR form a set of functions, denoted by

U =
{+∞∑

m=1

cmψm(x) |cm ∈ R

}
. (8)

Assume that N [u(x)] ∈ U , say, the nonlinear differential operator N is a kind
of mapping from V to U , i.e. N : V → U .

In the frame of the MDDiM, the series solution of u(x) is given by

u(x) = u0(x) +
+∞∑
k=1

uk(x), (9)

where u0(x) is an initial guess that satisfies all linear boundary conditions (2) and
belongs to the set V, and besides we have great freedom to choose it. Here, uk(x) ∈ V

is given by

uk(x) = χk uk−1(x) + c0 J
[
δk−1(x)

] +
μ∑

n=1

ak,nϕn(x), (10)

with the definitions

δn(x) = Dn

⎧⎨
⎩N

⎡
⎣u0(x) +

+∞∑
j=1

uj (x) qj

⎤
⎦

⎫⎬
⎭ ∈ U, (11)

and

χk =
{
0, k ≤ 1,

1, k > 1,
(12)
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where c0 is the so-called “convergence-control parameter”, which we have great free-
dom to choose, J is a directly defined inverse mapping, the operator Dn is the
so-called nth-order homotopy-derivative, defined by

Dnφ = 1

n!
∂nφ

∂qn

∣∣∣∣
q=0

, (13)

whose properties were proved by Liao [29] and are briefly listed in the Appendix of
this paper. Note that we can define

ûk(x) = χk uk−1(x) + c0 J
[
δk−1(x)

]
as a special solution of uk(x), and

u∗
k(x) =

μ∑
i=1

ak,iϕi(x) ∈ V ∗

as a primary solution of uk(x), respectively. According to (13), δn defined by (11)
can be regarded as the coefficient of Maclaurin series of the governing equation with
respect to the embedding parameter q ∈ [0, 1], say,

N

[+∞∑
n=0

un(x)qn

]
=

+∞∑
n=0

δn(x) qn. (14)

This provides us a simple way to gain δn (x) for n ≥ 0.
In (10), the unknown coefficients ai,k (1 ≤ i ≤ μ) are determined by the μ

boundary conditions

Bi

[
uk(x) − χk uk−1(x)

] = ci �i,k−1(x), at x = αi , 1 ≤ i ≤ μ, (15)

with the definition

�i,n(x) = Bi[un(x)] − (1 − χn+1)βi, (16)

where ci (1 ≤ i ≤ μ) is the so-called “convergence-control parameters”, which we
have great freedom to choose.

In (10), J denotes a directly defined mapping from U → V , with the following
rules:

(I) J is linear, i.e

∀α, β ∈ R,∀x, y ∈ U, J (αx + βy) = αJ (x) + βJ (y);
(II) J is injective, say, the kernel of J is {0}, i.e

{x|x ∈ U, J (x) = 0} = {0};
(III) J [δm(x)] contains each base function ϕi ∈ Ŝ (μ + 1 ≤ i < +∞) as m →

+∞ ;
(IV) J is finite, i.e. there exists such a finite constantK that for any ϕ ∈ V it holds

||J [N [ϕ]]||
||ϕ|| ≤ K.

Here, V, Ŝ, U are defined by (3), (5) and (8), respectively.
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It should be emphasized that there exist an auxiliary parameter c0 in (10) and the
μ auxiliary parameters c1, c2, · · · , cμ in the boundary conditions (15). All of them
have no physical meanings, but in theory we have great freedom to choose their
values. Mostly, if c0 and ci (1 ≤ i ≤ μ) are properly chosen, we can guarantee the
convergence of the series solution (9), as illustrated later. This is the reason why we
call c0, c1, c2, · · · , cμ “the convergence-control parameters”.

In addition, the following theorem can be proved.

Theorem of Convergence If the convergence-control parameters c0, c1, · · · , cμ and
the directly defined inverse mapping J are properly chosen so that the series (9) is
absolutely convergent, then it must be a solution of the original equation (1) and (2).

According to the above theorem, we only need choose proper mapping J and
proper convergence-control parameters c0, c1, c2, · · · , cμ so as to guarantee the con-
vergence of solution series. The proof of this convergence theorem and the detailed
derivation of the MDDiM will be given below.

3 The detailed derivations of MDDiM

The above-mentioned MDDiM is based on the homotopy analysis method (HAM)
[2–6], a analytic approximation technique for highly nonlinear differential equations.

The HAM is based on homotopy, a fundamental concept in topology, which
describes a continuous variation (or deformation) between an initial guess and an
exact solution of an equation. Without loss of generality, let us take the nonlinear dif-
ferential equation (1) and (2) as an example. Let u0(x) denote an initial guess of the
solution u(x) that satisfies the μ linear boundary conditions (2) and belongs to the set
V, c0, c1, c2, · · · , cμ are the (μ + 1) non-zero auxiliary parameters without physical
meanings (called “convergence-control parameters”), L : V → U is an auxiliary
linear operator with the property L [0] = 0, and q ∈ [0, 1] an embedding parameter
of homotopy, respectively. To build a continuous variation (or deformation), denoted
by (x; q), from the initial guess u0(x) to the exact solution u(x), we construct the
so-called zeroth-order deformation equation

(1 − q)L [(x; q) − u0(x)] = q c0 N [(x; q)], q ∈ [0, 1], (17)

subject to the μ linear boundary conditions

(1 − q)Bi [(x; q) − u0(x)] = q ci {Bi[(x; q)] − βi} , at x = αi, (18)

where 1 ≤ i ≤ μ. Obviously, (x; 0) = u0(x) when q = 0, since L [0] = 0.
Besides, (x; 1) = u(x) when q = 1, since ci 
= 0 for 0 ≤ i ≤ μ. In other words,
(17) and (18) define a continuous variation (x; q) from the initial guess u0(x) to
the solution u(x) of the original equations (1) and (2), as the homotopy parameter q
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increases from 0 to 1. Assuming that the solution (x; q) is analytic at q = 0, the
Maclaurin series of (x; q) with respect to q reads

(x; q) = u0(x) +
+∞∑
k=1

uk(x)qk, (19)

where

uk(x) = 1

k!
∂k(x; q)

∂qk

∣∣∣∣
q=0

= Dk(). (20)

Here, Dk is called the kth-order homotopy-derivative operator, defined by (13). For
properties and theorems about Dk in details, please refer to [29] and Section 4.2 of
Liao’s book [4].

Applying the kth-order homotopy-derivative operator Dk to both sides of the
zeroth-order deformation equations (17) and (18), it is straightforward to obtain the
kth-order deformation equation

L [uk(x) − χkuk−1(x)] = c0 δk−1(x), k ≥ 1 (21)

subject to the μ linear boundary conditions

Bi

[
uk(x) − χkuk−1(x)

] = ci �i,k−1(x), at x = αi, 1 ≤ i ≤ μ, (22)

where χn is defined by (12), and

δn(x) = Dn{N [(x; q)]}, (23)

�i,n(x) = Dn {Bi[(x; q)] − βi} = Bi[un(x)] − (1 − χn+1)βi . (24)

Note that δk−1(x) and �i,k−1(x) are only dependent upon u0(x), · · · , uk−1(x) and
thus are known for the unknown term uk(x). So, uk(x) is determined by the linear
differential equation (21) with the μ linear boundary conditions (22).

It should be emphasized here that, in the frame of the HAM, one has great freedom
to choose the auxiliary linear operator L , the initial guess u0(x), and especially the
so-called convergence-control parameters c0 and c1, c2, · · · , cμ, as pointed out by
Liao [28]. Assuming that all of them are properly chosen so that the Maclaurin series
(19) converges at q = 1, one gets the series solution

u(x) = u0(x) +
+∞∑
k=1

uk(x). (25)

The mth-order approximation of u(x) reads

u(x) ≈ u0(x) +
m∑

k=1

uk(x). (26)

Thus, in essence, the HAM transfers a nonlinear problem into an infinite number
of linear sub-problems. However, unlike perturbation methods [1], we do not need
any small/large physical parameters at all in the frame of the HAM for such kind
of transformation. In addition, unlike perturbation methods [1], we have now great
freedom to choose the auxiliary linear operator L . More importantly, the so-called
“convergence-control parameters” c0 and c1, c2, · · · , cμ provide a convenient way to
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guarantee the convergence of the solution series, as illustrated by lots of successful
applications of the HAM [3–6].

3.1 Normal strategy of the HAM

In the frame of the HAM, normally, one often chooses such a proper auxiliary linear
operator L that the linear high-order deformation equations (21) and (22) are easy to
solve, and besides that the convergence of the solution series is guaranted by means
of choosing proper convergence-control parameters c0 and c1, c2, · · · , cμ. This is
mainly because we have great freedom to choose L and the convergence-control
parameters in the frame of the HAM. This is completely different from perturbation
techniques. To guide how to choose L , Liao [3, 4] suggested a few rules described
below.

Assume that

u(x) =
+∞∑
m=1

bm ϕm(x) ∈ V, (27)

where V is defined by (3). We call it “the solution expression” of u(x), which plays
an important role in the normal frame of the HAM. Unlike perturbation methods, the
solution expression is the starting point of the HAM, since it greatly influences the
choice of the auxiliary linear operator L . As suggested by Liao [3, 4], L should be
chosen in such a way that

(a) there exists a unique solution uk(x) of the kth-order deformation equation (Rule
of Solution Existence);

(b) uk(x) ∈ V (Rule of Solution Expression);

(c)
+∞∑
k=0

uk(x) contains all base functions. (Rule of Completeness).

In addition, due to the Rule of Solution Existence, L should be chosen in such a
way that it holds

L [ϕi(x)] = 0, ∀ϕi(x) ∈ V ∗, 1 ≤ i ≤ μ, (28)

and
L [ϕi(x)] 
= 0, ∀ϕi(x) ∈ V̂ , i > μ, (29)

where V ∗ and V̂ are defined by (4) and (6), respectively, since there exist the μ linear
boundary conditions (2). In other words, ϕi ∈ V ∗, here 1 ≤ i ≤ μ, is a primary
solution of L [u(x)] = 0. Let L −1 : U → V̂ denote the inverse operator of L ,
whereU and V̂ are defined by (8) and (6), respectively. We have the common solution

uk(x) = χkuk−1(x) + c0L
−1[δk−1(x)] +

μ∑
i=1

ak,iϕi(x) (30)

of the high-order deformation equation (21), where the unknown coefficients ak,i

(1 ≤ i ≤ μ) are uniquely determined by the μ linear boundary conditions (22).
In practice, the key of this normal strategy of the HAM is to gain the inverse opera-

tor L −1 of the auxiliary linear operator L . Unfortunately, it is often time-consuming
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to gain an inverse operator L −1 of a differential equation, unless the linear operator
L is simple enough. Due to this restriction, we often had to choose simple auxiliary
linear operators L in the frame of the HAM. This widely restricts applications of the
HAM. To overcome this limitations, a new strategy of the HAM is suggested below.

3.2 New strategy of the HAM

Write J = L −1 : U → V̂ , which is an inverse linear operator of L . It should be
emphasized that, in the frame of the HAM, we have great freedom to choose L . In
theory, it means that we have great freedom to directly choose L −1, i.e. we also have
great freedom to define J : U → V̂ , directly, without choosing the auxiliary linear
operator L at all!

Then, the solution uk(x) of (21) reads

uk(x) = χkuk−1(x) + c0J [δk−1(x)] +
μ∑

i=1

ak,iϕi(x), (31)

where

ûk(x) = χkuk−1(x) + c0J [δk−1(x)]
is a special solution of uk(x),

u∗
k(x) =

μ∑
i=1

ak,iϕi(x)

is a primary solution of uk(x), and ak,1, ak,2, . . . , ak,μ are constants to be uniquely
determined by the μ linear boundary condition (22), respectively. Here, it should be
emphasized that, according to (31), it is unnecessary to know the specific form of the
auxiliary linear operator L : V → U , since the inverse operator J : U → V̂ is
defined directly. In this way, it is unnecessary to spend any CPU times to calculate
the inverse operator J , since it is known now!

The new strategy of the HAM is fundamentally different from the normal ones. In
the normal HAM, one should first choose (or define) a proper (but simple enough)
auxiliary linear operator L , then solve the linear high-order deformation equa-
tion (21), say, find out its inverse operator J = L −1 by means of spending lots
of CPU times. This is often time-consuming and sometimes even impossible, espe-
cially when L is complicated. However, using the new strategy of the HAM, one
can neglect the auxiliary linear operator L completely, but define the inverse lin-
ear operator J = L −1 directly! In this way, the high-order deformation equation
can be quickly solved, since it is unnecessary to calculate the inverse operator L −1

at all!
It should be emphasized that it is the HAM that provides us great freedom to

choose the auxiliary linear operator L , so that we further have the great freedom to
directly define its inverse operator J = L −1. For simplicity, we call this approach
“the method of directly defining inverse mapping” (MDDiM).
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3.3 Some rules of directly defining the inverse mapping J

Like the normal strategy of the HAM, the initial guess u0(x), the primary solutions
and the inverse operator J should be chosen in such a way that

(A) there exists a unique solution uk(x) of the kth-order deformation equation (Rule
of Solution Existence);

(B) uk(x) ∈ V (Rule of Solution Expression);

(C)
+∞∑
k=0

uk(x) contains all base functions (Rule of Completeness).

First of all, to obey the “Rule of Solution Expression”, we should choose an initial
guess u0(x) ∈ V . Since we have great freedom to choose u0(x) in the frame of the
HAM, we can choose

u0(x) =
μ∑

i=1

a0,i ϕi(x) ∈ V ∗,

where V ∗ is defined by (4), and the coefficients a0,i (1 ≤ i ≤ μ) are determined by
the linear boundary conditions (2).

Secondly, since the linear differential equation (21) has the μ linear boundary con-
ditions (22), the new strategy should provide the μ primary solutions of it. Obviously,
to obey “the Rule of Solution Expression”, each primary solution u∗

k(x) must belong
to V ∗. Thus, we directly define the primary solution

u∗
k(x) =

μ∑
i=1

ak,i ϕi(x) ∈ V ∗,

where ak,i are the unknown constants, which can be determined by the linear
boundary conditions (22).

Thirdly, to obey the “Rule of Solution Expression”, we should have

δk−1(x) ∈ U, J [δk−1(x)] ∈ V̂ ,

for k ≥ 1, and the special solution ûk(x) must belong to V , i.e.

ûk(x) = χk uk−1(x) + c0J [δk−1(x)] ∈ V.

In other words, J should be a mapping from U to V̂ . In addition, to obey the

“Rule of Completeness”,
+∞∑
k=0

uk(x) must contain all base functions ϕm ∈ S∞,

m = 1, 2, 3, · · · , +∞. Therefore, J [δk(x)] as k → ∞ should contain all elements
ϕi (i ≥ μ + 1) of the set Ŝ, where Ŝ is defined by (5).

In addition, since the high-order deformation equation (21) is linear, the inverse
operator J must be linear, too. Besides, to guarantee the uniqueness of the solution,
J must be injective. Furthermore, the mapping of the inverse operator J should be
finite.
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Therefore, the inverse operator J : U → V̂ should be defined according to the
following rules:

(I) J is linear, i.e

∀α, β ∈ R,∀x, y ∈ U, J (αx + βy) = αJ (x) + βJ (y);
(II) J is injective, say, the kernel of J is {0}, i.e

{x|x ∈ U, J (x) = 0} = {0};
(III) J [δm(x)] as m → +∞ contains all base functions ϕi ∈ Ŝ (i ≥ μ + 1);
(IV) J is finite, i.e. there exists such a finite constantK that for any ϕ ∈ V it holds

||J [N [ϕ]]||
||ϕ|| ≤ K.

Therefore, using the new strategy of the HAM, the common solution uk(x) of the
kth-order deformation equation (21) is the sum of the special solution ûk(x) and the
primary solution u∗

k(x), expressed by

uk(x) = χkuk−1(x) + c0J [δk−1(x)] +
μ∑

i=1

ak,i ϕi(x), (32)

where the constants ak,i (1 ≤ i ≤ μ) is uniquely determined by theμ linear boundary
conditions (22). We call this new strategy “the method of directly defining inverse
mapping” (MDDiM).

This is a new strategy to solve differential equation, since we completely neglect
the auxiliary linear operator L itself, but directly define its inverse operator J using
the above rules I - IV. In this way, we could overcome the restrictions and limitations
of traditional approaches for differential equations! So, the MDDiM might open a
new way for solving nonlinear differential equations.

3.4 Proof of the convergence theorem

It is generally proved [3, 4] in the frame of the HAM that, if a series solution given
by the HAM is absolutely convergent, it must be one solution of original nonlinear
equation under consideration. Since the above-mentioned “method of direct defining
inverse mapping” (MDDiM) is based on the HAM, one can prove the convergence
theorem in a rather similar way.

Since J : U → V̂ is injective and linear, its inverse operator L : V̂ → U

certainly exists (although we do not know its explicit form) and linear, say,

(i) L is linear, i.e

∀α, β ∈ R,∀x, y ∈ V, L (αx + βy) = αL (x) + βL (y);
(ii) the composition map L ◦ J is the identity in U , i.e

∀x ∈ U, L ◦ J [x] = x;
(iii) L [0] = 0, since L is injective from V̂ → U ,
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where V, V̂ , U are defined by (3), (6) and (8), respectively.
Besides, recall that

u∗
k =

μ∑
i=1

ak,i ϕi ∈ V ∗

is defined as the primary solution, where ϕi ∈ S∗. Thus,

L

[
μ∑

i=1

ak,i ϕi

]
= 0,

so that it holds

(iv) ∀x ∈ V ∗, L [x] = 0.

In this way, the linear operator L : V → U is well defined.
Here, a proof of the convergence-theorem in Section 2 is given below.

Proof Due to (10), it holds using (i), (ii) and (iv) that

L [uk] = L

{
χk uk−1 + c0J [δk−1] +

μ∑
i=1

ak,i ϕi

}

= χk L [uk−1] + c0δk−1,

since L ◦J [x] = x, ∀x ∈ U and L [x] = 0, ∀x ∈ V ∗. Taking the sum of the above
equation from k = 1 to +∞, we have

lim
k→+∞ L [uk] = c0

+∞∑
n=0

δn.

If (9) is absolutely convergent, it holds

lim
k→+∞ uk = 0

which leads to

c0

+∞∑
n=0

δn = lim
k→+∞ L [uk] = L

[
lim

k→+∞ uk

]
= L [0] = 0. (33)

Here, the property (iii) of L is used. Furthermore, since c0 
= 0, we have

+∞∑
n=0

δn = 0. (34)

The Taylor series of

N

[+∞∑
n=0

un qn

]

at q = 0 reads

N

[+∞∑
n=0

un qn

]
=

+∞∑
n=0

δn qn,
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which is now convergent to zero at q = 1, since

N

[+∞∑
n=0

un

]
=

+∞∑
n=0

δn = 0.

Here, (34) is used. Thus, the series (9) satisfies the governing equation

N

[+∞∑
n=0

un

]
= 0.

Similarly, since uk (k ≥ 1) satisfies the boundary condition (22), we have

Bi[um(x)] = ci

m−1∑
k=0

�i,k(x), at x = αi, 1 ≤ i ≤ μ,

by taking the sum of (22) from k = 1 to m. As m → +∞, it becomes

lim
m→+∞ Bi[um(x)] = ci

+∞∑
k=0

�i,k(x), at x = αi, 1 ≤ i ≤ μ.

Similarly, since the solution series (9) is absolutely convergent, we have

lim
m→+∞ Bi[um(x)] = Bi

[
lim

m→+∞ um(x)

]
= Bi[0] = 0,

which leads to
+∞∑
k=0

�i,k(x) = 0, at x = αi, 1 ≤ i ≤ μ,

since ci 
= 0. Therefore, the Maclaurin series

Bi

[+∞∑
n=0

un(x) qn

]
− βi =

+∞∑
k=0

�i,k(x)qk, 1 ≤ i ≤ μ,

tends to zero at q = 1, say,

Bi

[+∞∑
n=0

un(x)

]
= βi, 1 ≤ i ≤ μ.

Thus, the series (9) satisfies the original boundary condition (2), too.
Therefore, the solution series (9) is a solution of (1) and (2). This ends the proof.

4 Illustrative applications

Three examples are used here to illustrate the validity of the method of directly
defining inverse mapping (MDDiM).
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4.1 A nonlinear eigenvalue problem

First of all, let us consider a nonlinear eigenvalue problem

N1[u, λ] = u′′(x) + λu(x) + εu3(x) = 0, (35)

subject to the boundary conditions

u(0) = u(1) = 0, (36)

with the normalization condition ∫ 1

0
u2(x)dx = 1, (37)

where ε is a physical parameter, the prime denotes differentiation with respect to x,
respectively. Here, both of the eigenfunction u(x) and the eigenvalue λ are unknown.
This problem has an infinite number of solutions. Without loss of generality, let us
consider here its simplest solution.

According to the odd nonlinearity of (35) and the boundary condition (36), u(x)

can be expressed by

u(x) =
+∞∑
n=1

an sin[(2n − 1)πx], (38)

where an is a real constant and n ≥ 1 is an integer. Regard sin(πx) as the base
function of the primary solution. Then, we have the following sets

V =
{+∞∑

n=1

an sin[(2n − 1)πx]
∣∣∣∣∣ an ∈ R

}
, (39)

V ∗ = {a1 sin[πx]| a1 ∈ R} , (40)

V̂ =
{+∞∑

n=2

an sin[(2n − 1)πx]
∣∣∣∣∣ an ∈ R

}
. (41)

Note that V = V ∗ ∪ V̂ . Thus, it holds U = V for the considered eigenvalue
prolem.

The eigenfunction u(x) and eigenvalue λ are expressed by

u(x) =
+∞∑
n=0

un(x) ∈ V, λ =
+∞∑
n=0

λn, (42)

where u0(x) ∈ V ∗ is an initial guess. Note that un(x) ∈ V for n ≥ 1 and λn ∈ R for
n ≥ 0.

Consider the Maclaurin series

N1

[+∞∑
n=0

un(x)qn,

+∞∑
n=0

λnq
n

]
=

+∞∑
m=0

δm(x) qm
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about q, where

δm(x) = u′′
m(x) +

m∑
i=0

λium−i (x) + ε

m∑
i=0

um−i (x)

i∑
j=0

uj (x)ui−j (x). (43)

Obviously, δm(x) ∈ V = U , where the set V is defined by (39).
In the frame of the MDDiM, we have

um(x) = χm um−1(x) + c0Jα[δm−1(x)] + am,1 sin(πx), (44)

where c0 is “the convergence-control parameter” whose value we have great freedom
to choose, am,1 is a constant to be determined by the normalization condition (37),
Jα : V → V̂ is an inverse mapping directly defined here by

Jα {sin[(2m − 1)πx]} = − sin[(2m − 1)πx]
2(m − 1)(2m + 1 + α)π2

, (45)

where m > 1 is an integer and α > 0 is an auxiliary parameter to be chosen.
Note that different values of α correspond to different inverse mappings. So, we
actually define a family of inverse mappings Jα . According to the Rule (IV), the
inverse mapping Jα must be finite. However, Jα[sin(πx)] tends to infinity. To
avoid this, the term sin(πx) must disappear from δm(x) for m ≥ 0, say, its coef-
ficient must be zero. This just provides us an algebraic equation to determine the
unknown λm.

Note that the boundary condition u(0) = u(1) = 0 is automatically satisfied, since
u(x) ∈ V , where V is defined by (39). Considering the normalization condition (37),
we choose the initial guess u0(x) = √

2 sin(πx), since sin(πx) ∈ V ∗ is the base
function for the primary solution. Then, it is straightforward to gain δ0(x) defined by
(43). Enforcing the coefficient of sin(πx) in δ0(x) to be zero gives an algebraic equa-
tion of λ0, from which we gain λ0. Then, using (44) and the definition (45) of Jα ,
we gain u1(x), whose unknown coefficient a1,1 is determined by the normalization
condition (37), i.e.

∫ 1

0

[
1∑

n=0

un(x)

]2

dx = 1. (46)

In this way, we can gain λ0, u1(x), λ1, u2(x), and so on, successively, without
calculating any inverse operators!

In summary, if u0, u1, · · · , um−1 and λ0, λ1, · · · , λm−2 are known, it is straight-
forward to gain δm−1(x) defined by (43). Enforcing the coefficient of sin(πx) in
δm−1(x) to be zero gives an algebraic equation of λm−1, from which we know λm−1.
Then, using (44) and the definition (45) of Jα , we gain um(x), whose unknown
coefficient am,1 is determined by the normalization condition (37), i.e.

∫ 1

0

[
m∑

n=0

un(x)

]2

dx = 1. (47)
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Table 1 The residual error
square Em of (35) and the
relative error of the
corresponding eigenvalue λ/π2

by means of α = 2 with the
optimal convergence-control
parameter c0 = −5/8

m, order of approx. Em Relative error of λ/π2 (%)

10 7.5 × 10−6 7.0 × 10−4

20 7.5 × 10−14 4.8 × 10−8

30 7.5 × 10−22 4.8 × 10−12

40 1.3 × 10−30 5.6 × 10−16

50 7.5 × 10−39 7.0 × 10−20

In this way, we can gain the series of the eigenvalue λ and the eigenfunction u(x),
without calculating any inverse operators.

To measure the accuracy of the mth-order approximation

ū(x) =
m∑

n=0

un(x), λ̄ =
m−1∑
n=0

λn,

we consider the squared residual error

Em =
∫ 1

0

{
N1[ū(x), λ̄]}2 dx. (48)

Note that the two boundary conditions (36) are automatically satisfied, and the
normalization condition (37) is also satisfied. Therefore, the smaller the squared
residual error Em, the more accurate the mth-order approximation ū and λ̄.

It should be emphasized that, unlike perturbation techniques and other traditional
methods, the MDDiM contains an auxiliary parameter c0, called the convergence-
control parameter, which provides us a convenient way to guarantee the convergence
of solution series. For given α, the mth-order approximation ū and λ̄ contain c0. So
does the corresponding residual error square Em. Obviously, the optimal value of c0
is determined by the minimum of Em. In this example, we use the optimal value c0
gained at the 3rd order of approximation.

Without loss of generality, let us first consider the case of α = 2. Using the optimal
convergence-control parameter c0 = −5/8 obtained by the minimum of E3, we gain
a convergent series solution, with Em decreasing to 7.5 × 10−39 at the 50th-order of
approximation (i.e. m = 50), as shown in Table 1. This illustrates the validity of the
MDDiM.

Note that we directly define the inverse mapping (45) by introducing an auxiliary
parameter α. It is found that we can gain the convergent series solution for any values
of α ∈ (0, 8), as shown in Figs. 1 and 2, and besides α ≈ 2.2 gives the fastest
convergent series. This further illustrates that we indeed have large freedom and great
flexibility to directly define the inverse mapping Jα . To confirm this viewpoint, we
further consider a more general inverse mapping

Jβ,γ [sin(mπx)] = sin(mπx)

(1 − m)(
√

m + β)(
√

m + γ )π2
, (49)

where m = 2k − 1 with k > 1. Using the above inverse mapping with any values of
β ∈ (0, 4) and γ ∈ (0, 4), we also successfully obtain convergent series solution by

Author's personal copy



1006 Numer Algor (2016) 72:989–1020

α

L
og

10
E

50

0 1 2 3 4 5 6 7 8

-40

-35

-30

-25

-20

Fig. 1 The residual error square E50 of (35) at the 50th-order of approximation given by the MDDiM
versus the different values α ∈ [0, 8] of the directly defining inverse mapping Jα expressed by (45).
Obviously, all directly defining inverse mappings Jα expressed by (45) with any values α ∈ [0, 8] give
the convergent results

means of the corresponding optimal convergence-control parameter c0. All of these
indicate that we indeed have rather large freedom and great flexibility to directly
define the inverse mapping J so as to gain the convergent eigenfunction u(x) and
eigenvalue λ of (35) and (36).

When α = 1, the corresponding auxiliary operator L of the inverse mapping
Jα can be explicitly defined in a differential form, and the considered problem was
solved by means of the normal HAM, as mentioned in Section 8 of Liao’s book
[3]. However, as shown in Fig. 2, the series given by the MDDiM (when α = 4 or
α = 2.5) converge faster even than that given by the normal HAM (corresponding to
α = 1). It should be emphasized that, in most cases, the two families (45) and (49) of
the inverse mapping J (and its corresponding auxiliary linear operator L ) can not
be explicitly defined in a differential form. The key point is that it is unnecessary to
calculate the auxiliary linear operator L at all. This is very important, since it saves
a lots of CPU times and money. Therefore, we indeed can directly define the inverse
mapping J in a more general way. In other words, the MDDiM is more general
than traditional methods that are based on differential operators. This is the reason
why the MDDiM can give faster convergent series solution in many cases, as shown
in this example. Thus, the MDDiM is fundamentally different from the traditional
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Fig. 2 The residual error square Em of (35) at the mth-order of approximation given by the MDDiM
versus m (the order of approximation) for the directly defining inverse mappings Jα expressed by (45)
with different values of α. Solid line: α = 1 with the optimal convergence-control parameter c0 = −1/2;
Dash-dotted line: α = 4 with the optimal convergence-control parameter c0 = −11/13; Dashed line:
α = 2.5 with the optimal convergence-control parameter c0 = −2/3

methods for differential equations that often spend lots of CPU time to calculate
inverse operators.

4.2 Blasius flow

Secondly, let us consider the Blasius boundary-layer flow, governed by

f ′′′(η) + 1

2
f (η)f ′(η) = 0, f (0) = f ′(0) = 0, f ′(+∞) = 1. (50)

Write f (η) = F(z) + η, z = λ η, where λ > 0 is a constant to be chosen later.
Then, (50) becomes

N2[F ] = F ′′′ + 1

2λ2
(z + λF)F ′′ = 0, (51)

subject to the boundary conditions

F(0) = 0, F ′(0) = −1

λ
, F ′(+∞) = 0, (52)

where the prime denotes the derivative with respect to z.
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In the frame of the MDDiM, we have the solution series

F = F0(z) +
+∞∑
m=1

Fm(z), (53)

where F0(z) is an initial guess satisfying all boundary conditions, and Fk(z) is given
by

Fm(z) = χm−1Fm−1(z) + c0J
[
δm−1(z)

] + F ∗
m(z), (54)

subject to the boundary conditions

Fm(0) = F ′
m(0) = F ′(+∞) = 0, (55)

where c0 is the convergence-control parameter, J is a directly defined inverse
mapping, F ∗

m(z) is the primary solution, and

δk(z) = Dk

{
N2

[+∞∑
n=0

Fn(z) qn

]}

= F ′′′
k (z) + z

2λ2
F ′′

k (z) + 1

2λ

k∑
n=0

Fk−n(z)F
′′
n (z), (56)

respectively.
According to (55), F ′(z) tends to zero at infinity. So, we define the sets

V =
{+∞∑

n=0

an

(1 + z)n

∣∣∣∣∣ an ∈ R

}
, (57)

V̂ =
{+∞∑

n=2

an

(1 + z)n

∣∣∣∣∣ an ∈ R

}
= U, (58)

V ∗ =
{

1∑
n=0

an

(1 + z)n

∣∣∣∣∣ an ∈ R

}
. (59)

Note that V = V̂ ∪ V ∗. Obviously, F(z) ∈ V and δk(z) ∈ V̂ = U . Then, it is
straight forward to choose the initial guess

F0(z) = 1

λ

(
1

1 + z
− 1

)
∈ V ∗, (60)

which satisfies all boundary conditions (52). Besides, according to (56), δk(z) can be
expressed by

δk(z) =
+∞∑
m=2

ak,m

(1 + z)m
∈ U,

where ak,m is a real coefficient.
In the frame of the MDDiM, we directly define such an inverse mapping J :

U → V̂ that

J
[
(1 + z)m

] = (1 + z)m

m3 + A2m2 + A1m + A0
, m ≤ −2, (61)
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where A0, A1 and A2 are constants to be chosen. Its special solution reads

F̂m = χm Fm−1 + c0J
[
δm−1

]
. (62)

and the primary solution is

F ∗
m = am,0 + am,1

1 + z
∈ V ∗, (63)

where am,0 and am,1 are real coefficients. Thus, we have the solution

Fm(z) = F̂m + F ∗
m = χm Fm−1 + c0J

[
δm−1(z)

] + am,0 + am,1

(1 + z)
, (64)

where am,0 and am,1 are determined by Fm(0) = F ′
m(0) = 0 of the boundary

conditions (55), since F ′
m(+∞) is automatically satisfied.

In the frame of the MDDiM, the “convergence-control parameter” c0 provides us a
convenient way to guarantee the convergence of solution series. For properly chosen
parameters A2, A1, A0 of the inverse mapping J defined by (61), one can choose an
optimal value of the convergence-control parameter c0 for a fastest convergence of
the series (53). For example, we can gain the convergent series solution by means of

λ = 1

3
, A0 = 1

3π
, A1 = π

30
, A2 = π

3
, c0 = −9

5
,

as shown in Table 2. The corresponding 30th-order approximations agrees well with
the numerical ones in the whole interval η ∈ [0, +∞), as shown in Fig. 3. It is found
that such kind of inverse mapping J is not unique: one can gain convergent series
solution by means of many inverse mappings, such as

λ = 1

3
, A0 = 0, A1 = 0, A2 = π

3
, c0 = −3

2
,

or

λ = 1

3
, A0 = 1

10
, A1 = π

12
, A2 = π

3
, c0 = −3

2
,

and so on: all of them give the same results that converge to the numerical ones!

Table 2 Approximations of
Blasius boundary-layer flows by
means of the MDDiM using the
directly defined inverse mapping
(61) with A0 = 1/(3π),
A1 = π/30, A2 = π/3 and
λ = 1/3, c0 = −9/5

m, order of approx. f ′′(0) Em

10 0.34354 2.3 × 10−3

20 0.33362 8.5 × 10−5

30 0.33206 2.3 × 10−6

40 0.33213 9.8 × 10−8

50 0.33207 2.0 × 10−8

60 0.33203 3.2 × 10−9

70 0.33207 7.0 × 10−10

80 0.33207 3.2 × 10−10

90 0.33205 1.1 × 10−10

100 0.33205 2.2 × 10−11

Author's personal copy



1010 Numer Algor (2016) 72:989–1020

η

f

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Fig. 3 Comparison of f ′(η) between the numerical result and the 30th-order approximation given by
means of the MDDiM using the directly defined inverse mapping (61) with A0 = 1/(3π),A1 =
π/30, A2 = π/3 and λ = 1/3, c0 = −9/5. Solid line: numerical result; Symbols: analytic result given by
the MDDiM

This example illustrates that, in the frame of the MDDiM, there indeed exist many
directly defined inverse mappings J , which lead to the same convergent series solu-
tions of Blasius boundary-layer flow, as long as they are properly defined. The 2nd
example shows once again the validity and potential of the MDDiM.

4.3 Gelfand equation

Finally, let us consider the two-dimensional Gelfand equation

∇2u + λ eu = 0, x ∈ [−1, 1], y ∈ [−1, 1], (65)

subject to the boundary conditions

u(x, ±1) = f (x, ±1), u(±1, y) = f (±1, y), (66)

where u(x, y) is the unknown eigenfunction, λ is the unknown eigenvalue, and
f (x, y) is a given smooth even function, respectively.

Define u(0, 0) = A and write u = A + w, where A is a unknown constant. The
above equations becomes

N3[w, λ] = ∇2w +
(
λeA

)
ew = 0, x ∈ [−1, 1], y ∈ [−1, 1], (67)
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subject to the boundary conditions

w(x,±1) = −A + f (x, ±1), w(±1, y) = −A + f (±1, y), (68)

with the restriction

w(0, 0) = 0. (69)

Obviously, for a given A, if w(x, y) and λ satisfy the governing equation (67) and
the boundary conditions (68), then all of w(−x, y), w(x,−y) and w(−x, −y) are its
solutions, since f (x, y) is an even function. So, w(x, y) is an even function of x and
y, and thus can be expressed by

w(x, y) =
+∞∑
m=0

+∞∑
n=0

am,n x2m y2n. (70)

Define the sets

V = U =
{ +∞∑

m=0

+∞∑
n=0

am,n x2m y2n

∣∣∣∣∣ am,n ∈ R

}
(71)

and

V̂ =
{ +∞∑

m=1

+∞∑
n=1

am,n x2m y2n

∣∣∣∣∣ am,n ∈ R

}
. (72)

In the frame of the MDDiM, we have the mth-order approximation

w ≈ w0(x, y) +
m∑

n=1

wn(x, y), λ ≈
m∑

n=0

λn,

where w0(x, y) is the initial guess, and

wn(x, y) = ŵn + w∗
n, n ≥ 1, (73)

in which

ŵn(x, y) = χn wn−1(x, y) + c0 J
[
δn−1(x, y)

]
(74)

is a special solution, w∗
n(x, y) is a primary solution, c0 is the “convergence-control

parameter”, and

δk = Dk

{
N3

[+∞∑
i=0

λiq
i,

+∞∑
i=0

ui qi

]}

= ∇2wk + eA
k∑

i=0

λk−iGk(x, y), (75)

with the definition

G0 = eu0 , Gk =
k−1∑
i=0

(
1 − i

k

)
wk−iGi,
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respectively. Note that δk ∈ U . Thus, in the frame of the MDDiM, we directly define
an inverse mapping J : U → V̂ , say,

J
[
xm yn

] = xm+2 yn+2

(m2 + B1m + B0)(n2 + B1n + B0)
, m ≥ 0, n ≥ 0, (76)

where B0 > 0 and B1 > 0 are constants, and U and V̂ are defined by (71) and (72),
respectively.

For the sake of the completeness, we have the primary solution w∗
n ∈ V ∗, where

V ∗ =
{ +∞∑

m=0

(
am,0 x2m + a0,m y2n

)∣∣∣∣∣ am,0, a0,m ∈ R

}
, (77)

since wn ∈ V and ŵn ∈ V̂ . The primary solution w∗
n is determined by the boundary

conditions

wn − χn wn−1 = c1
[
wn−1 + (1 − χn)[A − f (x, y)]] , at x = ±1, y = ±1, (78)

where c1 is the 2nd “convergence-control parameter”. For simplicity, write

wn = �n(x, y), at x = ±1 or y = ±1, (79)

where
�n(x, y) = χn wn−1 + c1

[
wn−1 + (1 − χn)[A − f (x, y)]] .

Substitutingwn = ŵn+w∗
n into the boundary conditions (79), we have the primary

solution

w∗
n(x, y) = −ŵn(x, ±1) − ŵn(±1, y) + ŵn(±, ±1)

+�n(x, ±1) + �n(±1, y) − �n(±1, ±1). (80)

Finally, we have the solution

wn(x, y) = ŵn(x, y) − ŵn(x, ±1) − ŵn(±1, y) + ŵn(±, ±1)

+�n(x, ±1) + �n(±1, y) − �n(±1, ±1), (81)

which satisfies all of the boundary conditions (79). Up to now, λk−1 is unknown.
Note that, according to the restriction condition (69), we have wn(0, 0) = 0. This just
provides us an algebraic equation for the unknown λn−1. For simplicity, we choose
the initial guess w0(x, y) = 0. Then, using the above approach, we can gain w1, λ0,
then w2, λ1, and so on, step by step.

Note that there exist two convergence-control parameters c0 and c1. Besides, we
have great freedom to choose the two auxiliary parameters B0 and B1 in the directly
defined inverse mapping (76). It is found that the convergent series solution can be
obtained by means of choosing proper convergence-control parameters c0, c1 and the
two auxiliary parameters B0, B1 in (76). For example, in case of f (x, y) = 0, we
gain the good approximation of u(x, y) and λ for A ∈ [0, 12] by means of choosing
B1 = π,B0 = π/2 and c0 = 3/4, c1 = −3/4, as shown in Fig. 4. Such kind of
inverse mapping is not unique: the same convergent result can be obtained by means
of choosing B1 = 3, B0 = 2 and c0 = 1, c1 = −1. This illustrates that we indeed
have large freedom and great flexibility to directly define the inverse mapping (76)!
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Fig. 4 The eigenvalue of the Gelfand equation in case of f (x, y) = 0 by means of the MDDiM using
the directly defining inverse mapping (76) with B1 = π,B0 = π/2 and c0 = 3/4, c1 = −3/4. Solid line:
20th-order approximation; Symbols: 25th-order approximation

Similarly, in case of

f (x, y) = ± (1 + x2)(1 + y2)

10
, (82)

we gain the good approximation of u(x, y) and λ for A ∈ [0, 12] by means of B1 =
π,B0 = π/2 and c0 = 1/2, c1 = −1/2, as shown in Fig. 5.

In case of
f (x, y) = ±(x2 − x2y2 + y2)/2, (83)

the good approximation of u(x, y) and λ for A ∈ [0, 12] are gained by means of
B1 = π,B0 = π/2 and c0 = 1/2, c1 = −1/2, as shown in Fig. 6. In case of

f (x, y) = cos(x) + cos(y), (84)

the good approximation of u(x, y) and λ for A ∈ [0, 12] are gained by means of
B1 = π,B0 = π/2 and c0 = 1, c1 = −1, as shown in Fig. 7. Here, we use

cos(x) + cos(y) ≈ 2 − 1

2
(x2 + y2) + 1

24
(x4 + y4) − 1

720
(x6 + y6),

which is a good approximation for all x ∈ [−1, 1] and y ∈ [−1, 1]. In case of

f (x, y) = cos[sin(x)] − exp(y2), (85)
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Fig. 5 The eigenvalue of the Gelfand equation in case of f (x, y) = ±(1 + x2)(1 + y2)/10 by means of
the MDDiM using the directly defining inverse mapping (76) with B1 = π,B0 = π/2 and c0 = 1/2, c1 =
−1/2. Lines: 20th-order approximation; Symbols: 25th-order approximation. Solid line: f (x, y) = (1 +
x2)(1 + y2)/10; Dashed line: f (x, y) = −(1 + x2)(1 + y2)/10

the good approximation of u(x, y) and λ for A ∈ [0, 12] are gained by means of
B1 = π,B0 = π/2 and c0 = 3/4, c1 = −3/4, as shown in Fig. 7. Here, we use

cos[sin(x)] − exp(y2) ≈ −1

2
x2 + 5

24
x4 − 37

720
x6 + 457

40320
x8 − 389

172800
x10

−
(

y2 + 1

2
y4 + 1

6
y6 + 1

24
y8 + 1

120
y10

)
, (86)

which is a good approximation for all x ∈ [−1, 1] and y ∈ [−1, 1]. Thus, by means
of theMDDiM, the two-dimensional Gelfand equation (65) and (66) with rather com-
plicated even function f (x, y) can be easily solved in a straight-forward way. Note
that the inverse mapping J (which leads to convergent results) is not unique in all
of these cases.

Finally, it should be mentioned that, whenB1 = 3 andB0 = 2, the directly defined
inverse mapping (76) can be expressed in a differential form

L u = J −1u = ∂4u

∂x2∂y2
, (87)
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Fig. 6 The eigenvalue of the Gelfand equation in case of f (x, y) = ±(x2 − x2y2 + y2)/2 by means of
the MDDiM using the directly defining inverse mapping (76) with B1 = π,B0 = π/2 and c0 = 1/2, c1 =
−1/2. Lines: 20th-order approximation; Symbols: 25th-order approximation. Solid line: f (x, y) = (x2 −
x2y2 + y2)/2; Dashed line: f (x, y) = −(x2 − x2y2 + y2)/2

which is used by Liao and Tan [28] in the frame of the normal HAM. As mentioned
in [28], the original 2nd-order Gelfand equation is transferred into an infinite num-
ber of 4th-order linear differential equations governed by an auxiliary linear operator
L defined above. This is very difficult to understand in the frame of the traditional
methods for differential equations, which often transfer a nth-order differential equa-
tion to some sub-equations but only with the same order. However, in the frame of
the MDDiM, it is easy and straight-forward to understand it, since the MDDiM is
based on a mapping that is more general than a differential operator. Especially, it
should be emphasized that, when B2 = π and B0 = π/2 (as we used in this paper),
the auxiliary linear operator L = J −1 can not be expressed in a differential form!
Fortunately, we now need not consider the auxiliary linear operator L at all, mainly
because the MDDiM is based on the directly defined inverse mapping J , without
considering its original auxiliary operator L . This opens a new, more general way
to solve nonlinear differential equations, which is fundamentally different from the
traditional methods.

All of these examples illustrate the validity of the MDDiM, and especially the
great freedom and large flexibility of directly defining the inverse mapping J for
various types of nonlinear problems.
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Fig. 7 The eigenvalue of the Gelfand equation in cases of f (x, y) = cos x + cos y and f (x, y) =
cos[sin(x)]−exp(y2) by means of the MDDiM using the directly defining inverse mapping (76) withB1 =
π,B0 = π/2 and c0 = 1, c1 = −1. Lines: 15th-order approximation; Symbols: 20th-order approximation.
Solid line: f (x, y) = cos x + cos y; Dashed line: f (x, y) = cos[sin(x)] − exp(y2)

5 Concluding remarks

In scientific computation, it is time-consuming to calculate inverse operators of a dif-
ferential equation. Can we solve a nonlinear differential equation without calculating
any inverse operators?

The answer is positive: we can indeed solve nonlinear differential equations by
directly defining an inverse mapping J , as described in this article. In this work,
the “method of directly defining inverse mapping” (MDDiM) is proposed based on
the homotopy analysis method (HAM) [2–6], a widely used analytic approximation
technique for highly nonlinear problems. By means of the MDDiM, one indeed can
solve a nonlinear differential equation without searching for any inverse operators at
all, as illustrated in this paper. From this viewpoint, the MDDiM is fundamentally
different from the traditional ones, which often spend lots of time to calculate inverse
operators.

To simplify the use of the MDDiM, some rules are given to guide how to directly
define an inverse mapping J . Besides, a convergence theorem is proved, which
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guarantees that a convergent series solution given by the MDDiM must be one
solution of problems under consideration. In addition, three examples are used to
illustrate the validity and potential of the MDDiM.

The MDDiM can be regarded as a generalization of the HAM and other traditional
methods: it directly uses mappings between base functions, instead of differential
operators. Note that mapping is more general than differential operator. So, theo-
retically speaking, the MDDiM is more general than the normal HAM and other
traditional methods which are based on differential operators.

In the frame of the normal HAM, the 2nd-order two-dimensional Gelfand equation
were replaced by an infinite number of the 4th-order (two-dimensional) linear differ-
ential equations, as shown by Liao and Tan [28] who gained accurate approximations
with good agreement to numerical ones. However, this is very difficult to understand
in the frame of the traditional methods for differential equations. But, from the view-
point of the MDDiM, it is easy and straight-forward to understand, since the MDDiM
gives up the concept of “differential operator” at all: it is based on directly defining
inverse mapping that is a concept more general than “differential operator”.

Note that many differential equations have their equivalent form in integral. This
suggests that many integral equations can be solved by means of MDDiM. Although
the three examples used in this paper are boundary-value problems, the MDDiM
should be also valid for some initial problems whose solutions are not chaotic.

In summary, the MDDiM might bring us a completely new, quite general way
to solve nonlinear differential equations, if base functions and inverse mapping are
properly chosen. Without doubt, the MDDiM is at its very beginning, and thus further
theoretical researches and more applications are certainly needed in future.

Acknowledgment This work is partly supported by National Natural Science Foundation of China
(Approval No. 11272209 and No. 11432009) and State Key Laboratory of Ocean Engineering (Approval
No.GKZD010065).

Appendix A: The properties of the homotopy-derivative Dm

For two series

φ(x; q) =
+∞∑
k=0

uk(x) qk, ψ(x; q) =
+∞∑
k=0

wk(x) qk,

where φ(x; q) and ψ(x; q) are analytic in q ∈ [0, a], it holds for integer m ≥ 0 that

Dm[φ] = um, (88)

Dm[qkφ] = Dm−k[φ] =
{

um−k when 1 ≤ k ≤ m,

0 when k > m,
(89)

Dm[φψ] =
m∑

k=0

Dk[φ] Dm−k[ψ] =
m∑

k=0

uk wm−k
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=
m∑

k=0

Dk[ψ] Dm−k[φ] =
m∑

k=0

wk um−k, (90)

Dm[φn+1] =
m∑

k=0

Dk[φ] Dm−k[φn] =
m∑

k=0

uk Dm−k[φn]. (91)

Besides, it holds

Dm[φn] =
m∑

r1=0

um−r1

r1∑
r2=0

ur1−r2

r2∑
r3=0

ur2−r3 · · ·
rn−2∑

rn−1=0

urn−2−rn−1urn−1 , (92)

and

Dm[f (x) φ + g(x) ψ] = f (x)Dm[φ] + g(x)Dm[ψ] (93)

for arbitrary function f and g independent of q, and

Dm [L [φ]] = L [Dm[φ]] = L [um] (94)

for a linear operator L , respectively. In addition, it holds the recursion formulas

D0
[
eαφ

] = eαu0 , (95)

Dm

[
eαφ

] = α

m−1∑
k=0

(
1 − k

m

)
um−k Dk

[
eαφ

] ; (96)

D0[sinφ] = sin(u0), D0[cosφ] = cos(u0), (97)

Dm [sinφ] =
m−1∑
k=0

(
1 − k

m

)
um−k Dk [cosφ] , (98)

Dm [cosφ] = −
m−1∑
k=0

(
1 − k

m

)
um−k Dk [sinφ] (99)

for m ≥ 1. In general, it holds the recursion formulas

D0[f (φ)] = f (u0), (100)

Dm[f (φ)] =
m−1∑
k=0

(
1 − k

m

)
um−k Dk

[
f ′(φ)

]

=
m−1∑
k=0

(
1 − k

m

)
um−k

∂ {Dk[f (φ)]}
∂u0

(101)

for m ≥ 1, where f (φ) is a smooth function.
For detailed derivation of these properties, please refer to Liao [29] and Section

4.2 of Liao’s book [4].
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Using the above properties, one can derive some other formulas. For example, it
holds

Dm+1 [sin(qφ)] = Dm+1

[
q

{
sin(qφ)

q

}]

= D1[q]Dm

[
sin(qφ)

q

]

= Dm

[
sin(qφ)

q

]
. (102)

So, using the recursion formulas mentioned above, one can get Dm[q−1 sin(qφ)].
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