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Abstract

In this paper, the unsteady magnetohydrodynamic viscous flows of non-Newtonian fluids caused by an impulsively stretching plate are
studied by means of an analytic technique, namely the homotopy analysis method. We give the analytic series solutions which are accurate al
uniformly valid for all dimensionless time in the whole spatial regios @ < co. To the best of authors’ knowledge, such kind of analytic
solutions have been never reported. Besides, the effects of the integral power-lawnirgddx 2, 3) of the non-Newtonian fluids and the
magnetic parametew = 0, 1, 2 on the flows are investigated.
© 2005 Published by Elsevier B.V.
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1. Introduction stretched sheet with constant surface velocity and tempera-
ture. Jacobf5] reported numerical results for a stretched sur-
Investigations of boundary layer flows of viscous fluids face with uniform motion. The related problems of a stretched
due to a stretching sheet have been the interest of many resheet with a linear velocity and different thermal boundary
searchers owing to its important applications in chemical and conditions are studied, theoretically, numerically and exper-
metallurgical industries, such as polymer extrusion, drawing imentally, by many researchers such as CiéheChen and
of copper wires, continuous stretching of plastic films and Char[7], Gupta and Gupt®]. Rajagopal9] studied a bound-
artificial fibers, hot rolling, wire drawing, glass-fiber, metal ary layer flow of a hon-Newtonian fluid due to a stretching
extrusion, and metal spinning. Sakiafisinitiated the study ~ sheet with uniform free stream, and obtained many interest-
of the boundary layer flow over a stretched surface moving ing results. Troy et a[10] established the uniqueness of the
with a constant velocity and formulated a boundary-layer steady flow of an incompressible second-order fluid over a
equation for two-dimensional and axisymmetric flows. Tsou stretching sheet.
etal.[2] considered the effect of heat transferinthe boundary  In recent years, many investigations have concentrated
on a continuous moving surface with a constant velocity and on the magnetohydrodynamic (MHD) flows because of its
experimentally confirmed the numerical results of Sakiadis. important applications in metallurgical industry, such as the
Erickson et al[3] extended the work of Sakiadis to include cooling of continuous strips and filaments drawn through a
blowing or suction at the stretched sheet surface on a contin-quiescent fluid and the purification of molten metals from
uous solid surface under constant speed and investigated itsion-metallic inclusions. Chakrabarti and Gufita] studied
effects on the heat and mass transfer in the boundary layerthe MHD flow of Newtonian fluids initially at rest, over a
Chen and Strobl@4] investigated the effect of a buoyancy- stretching sheet at a different uniform temperature. Vajrav-
induced pressure gradient in a laminar boundary layer of a elu and Hadjinicolao{l2] made a analysis to flows and heat
transfer characteristics in an electrically conducting fluid near
"+ Corresponding author. Tel.: +86 21 6293 2676; fax: +86 21 6203 3156, 2N iSothermal sheet. Many works have been reported on the
E-mail addresseshenry629@sjtu.edu.cn (H. Xu), sjliao@sjtu.educn Problem of a stretching sheet with a linear velocity in the
(S.-J. Liao). presence of a magnetic fluid, such [A8-18] The MHD
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flows of non-Newtonian fluids were initially studied by Sarp- whereu and v are the velocity components in the and
kaya[19], then followed by Djukid20,21], Andersson etal.  y-directionst denotes the times, o, Bo andzy, are the den-
[22], and Liao[23], etc. Very recently, Lia¢g24] obtained an sity, electrical conductivity, magnetic field and shear stress,
accurate analytic solution of unsteady boundary layer flows respectively. The shear tensor is defined by the Ostwald-de-
caused by an impulsively stretching plate uniformly valid for Wale model:
all non-dimensional time;. Cheng and Huanf5] consid- (n—1)2
ered the problem of unsteady flows and heat transfer in the/ = 2K (2D Dy) Dij, (2)
laminar boundary on alinearly accelerating surface with suc- \ here
tion or blowing in the absence and presence of a heat source or

The homotopy[26] is a basic concept in topolod®7]. AT Y
Based on the homotopy, some numerical techniques suc
as the continuation methof28] and the homotopy con-
tinuation method29] were developed. There is a suite of
FORTRAN subroutines in Netlib for solving nonlinear sys-
tems of equations by homotopy methods, called HOMPACK. 1 <0 : u=v=0, aty>0, —0o <x < +oo, (4a)
Currently, using the concept of homotopy, LiEg9] devel-
oped a new analytic method for highly nonlinear problems, =0 : u=Cx, v=0, aty=0, (4b)
namely the homotopy analysis method (HAM). Different (>0 -
from perturbation techniquel81], the homotopy analysis -
method does not depend upon any small or large parametersvhereC is a positive constant. L&t denote the stream func-
and thus is valid for most of nonlinear problems in science tion v, satisfying:
and engineering. Besides, it logically contains other non- oy oy
perturbation techniques such as Lyapunov’s small parameter, — —— V= —— (5)

hdenotes the rate of stretching ten$ois the consistency coef-
ficientandnis the power-law index. The initial and boundary
conditions are:

u— 0, asy— +oo, (4c)

) -

method[32], the §-expansion metho{B3], and Adomian’s dy ox

decomposition methof@4]. The homotopy analysis method  Following Liao[24] and Nazar et a[41], we use the simi-
has been successfully applied to many nonlinear problems|arity transformations:

[35-40] The aim of the present paper is to study the un-

steady MHD.viscous flovys of non—Newtoqian flgids caused v < K& )1/(”+1) 2D E( ) ©)
by an impulsively stretching plate, and to investigate the ef- pCl-2n e
fect of integral power-law index of these non-Newtonian flu-
ids on the velocity. To the best of authors’ knowledge, no an
one has reported an analytic solution valid for all dimen- pC2" 1/(n+1) v
sionless time (< t < oo in the whole spatial region & 7 n=y ( Ke ) x=m/@tn)
< OQ.
E=1—expl~1), 1T=CL @)
Then, the governing Eg¢la) and (1bpecome:
2. Mathematical description
. N RF  8°F R2F\" "t BF
Liao [23] solved the steady magnetohydrodynamic flows 1-98) (n T1an2 - 53,]35> <_3772> 3
of non-Newtonian fluids over a stretching sheet by means of
the homotopy analysis method. Here, we further consider the i 2n Fazl _ <8F> 2 _ MELF _0 (8a)
unsteady flows of an electrically conducting fluid, obeying n+1 9?2 an ml|
the power-law model in the presence of a transverse magnetic
field, past a flat sheet lying on the plape= 0. Two equal  Subject to the boundary conditions:
but opposite forces are applied along thaxis so that the AF(n, £) AF(y, )
wall is stretched keeping the original fixed. The unsteady F(0,&) =0, ———= =1 — =0,
MHD flows of this kind of non-Newtonian fluids are governed M ly=o My oo
by (8b)
ou v whereM = aBg/(pC) is the magnetic parameter.
e 5 =0, (1) Whené = 0, corresponding te = 0, we have from(8a)

that
ou ou ou 1oty oB?2 2\ "1 a3 2
—du—tv— =20, (1b) n _oF al_l_ial:o’ (9a)
ot ox ay p dy 1% 8772 3,73 n+1 8772
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subject to the boundary conditions:

doF(n,
F(0,0) =0, g" £) =1,
n n=0,=0
oF
M =0. (9b)
377 n——+00,E=0

Especially, where = 0 andn = 1, Eq. (9a) becomes the
Rayleigh type of equation, and it has the exact solution:

2
NG

When¢ = 1, corresponding ta — +o00, we have from
(8a)that

F(n, 0) = nerfc(n/2) + —=[1 — exp(n?/4)]. (10)

R2F\" 93F L F82F IF\ 2 W OF
an? m  n+1 m? on on
=0, (11a)

subject to the boundary conditions:

OF
F(0,1) =0, g” ) _1
n n=0,=1
dF(n,
ﬂ —0. (11b)
877 n——+00,6=1

Whené = 1 andn = 1, Eqg.(11a)has the exact solution:

1—exp+/14+ Mp)
Vi+ M ’
For details, please refer to Li§23] for the steady-state flows,

corresponding tg = 1.
The skin frictionC ¢(£) at the wall is given by:

F(n.1)= (12)

Tw
p(Cx)?

Cr(e) = = £/0 D=y (0, £)]" Re M,
(13)

where Re = (Cx)*>"x"/(K/p) is the local Reynolds
number.

3. Homotopy analysis method

3.1. Zeroth-order deformation equation

(g™ expnn) k> 0,n > 0,m > 0} (14)
in the form:
+00 400 400
F,8) =Y > a, &n" expnn), (15)
k=0m=0n=1

whered®, is a coefficient. This provides us with the so-

m,n

calledRule of Solution Expressiorisr F(n, £). According
to the Rule of Solution Expressiqi5) and from(8a) and
(8b), it is straightforward to choose:

Fo(n,§) = 1—exp(=n) (16)
as the initial approximation df(n, &), and besides to choose:

Pd 9D

L[PE 0, q)] = 87773 3777 (7)

as the auxiliary linear operator, which has the following
property:
L[Crexp(=n) + C2exply) + C3] =0, (18)

whereC,, C2, and(C3 are constants. Based ¢8a), we are
led to define the nonlinear operator:

Mo, & 9)]
R 2o R2o\"t 930
=1-9 (g e )-S5 ) 3
n+1adn 0Edn on on
2n 9% <a<p>2 1)
@ -M

TP (2 21, 19
5 n+1" am? on m (19)

Let denote a non-zero auxiliary parameter. We construct the
so-called zeroth-order deformation equation:

A -L[2(™, & q) — Fo(n, &)] = g M@(n,§:q)], (20a)
subject to the boundary conditions:

02(n, &, q) —0 0®(n, & q)
n =0 on n=-+00
=0, (20b)

whereq € [0, 1] is an embedding parameter.
Obviously, whery = 0 andg = 1, the above zeroth-order
deformation Eqs(20a) and (20blhave the solutions:

P(n, §;0) = Fo(n, §), (21)
The steady-state magnetohydrodynamic flows of non-
Newtonian fluids over a stretching sheet was solved by Liao
[23]. Recently, by means of homotopy analysis method, o(n, £1) = F(n, &), (22)

Liao [24] obtained accurate solutions of a kind of unsteady

boundary layer flows of a Newtonian fluid caused by an respectively. Thus agincreases from 0to (), &; ¢) varies

impulsively stretching flat plate. Following Lid@3,24], we
expressF(n, &) by a set of base functions:

from the initial guessp(n, &) to the solutionF(n, &) of the
considered unsteady problem. So, expanding, &;¢) in
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Taylor’s series with respect to the embedding paramgter
we have:

whenn = 2, it holds

F, F,
I Rm(Fm l) (1 %') (77 a md a - l) 2Bm 1
(1,6 9) = D(.£0)+ > _ Fu(n. £)q", (23) T T
m=1 m—1
4 3 Fm l O Pm—1-i OF; 0Fy—i—1
where Z _ Z L
1 "0y, £9) - =
Fn(n, &) = m aam . (24) 0F,_1
dq 4=0 -M , (31)
an

Note that(20a)contains the auxiliary parameter . Assuming
that is properly chosen so that the se(i23) is convergent
atqg = 1, we have, usin@21) and (22)the solution series:

Rm(ﬁm—l) (1 é) (

whenn = 3, it reads

773 Fu— 1_%_32le>

+00 2
4 on andg
F(n. &) = Fo(n.8) + Y _ Fu(n. 8). (25) )
m=1 +3§A_83Fm717i+€ — 3F 92F, Fp_1-;
o o =2
3.2. High-order deformation equation
8F 8Fm i-1 8Fm,1 32
For the sake of simplicity, we define the vector: B 2; am |’ (32)
Fp = (Fo. F1, Pz, ... Fy). (26) and whem = 4, we have:
Differentiating the zeroth-order deformation equati¢2@a) 2F 2F
m times with respect ta, then settingg = 0, and finally Ryu(Fu_1) = (1—£) (77 ’”2 CRy m_l>
dividing them bym!, we obtain themth-order deformation 5 an onog
equations: m—1 nlg 82K
- _4ZABmll+E 5["17211
LUFn(1. €) = Jon Fu-1(0. €)] = Run(F 1), (272) s =0 9
subject to the boundary conditions: Z Lo, 8Fm -1 8Fm—l] (33)
Fu (n, 0 Fu (n, on |
Fm(O, é__) — 0, (77 E) — 0’ (77 S) i=0
877 n=0 3’1 n=-+o00
=0, (27b)
where
- 1 o INe®m, &
R(Fyp_1) = MG, &) (28)
(m — 1)! ag™ 4=0
and
B 0,m=1, (29)
Xm = 1,m> 1

Note thatRm(fVm_l) depends on the integer power-law index
n. Whenn = 1, we have:

> n PFp—1 |, °Fp1 FPFn—1 :
Rm(Fm—l) (1 E) 2 2 éj— 3 )
8 87735 377 B0 I T T TN T N T 0 O A B A I
1 1 0 2 3 4 5 6 7 8
’”ZFale,_’"z‘:@aFm_i_l n
i=0 n n Fig. 1. The comparison af,(n, 0) of the analytic approximation with the
exact and numerical solutions when= 1, 2, 3: (filled circles) 20th-order
0F,—1 HAM approximations; (solid line) exact solutig¢h0) whenn = 1; (dashed
-M an ’ (30) line) numerical solution when = 2; (dash-dotted line) numerical solution
whenn = 3.




DTD 5

50

M, 1)

0 1 2 3

Fig. 2. The comparison af, (n, 1) of the analytic approximations with the
exact solution(12) and Liao’s steady-state resu[@3] whenM =0, 1, 2
andn = 1: (filled circles) 20th-order HAM approximations; (open circles)
steady-state solution given by Li§23]; (lines) exact solutiot(12).

respectively, where

Y
0°F; 0°F_;
A= , (34)
J 25 a3
02F; 83F;_;
Bj = mZ o3 (35)
i=0

Let F; (n, £) denote a special solution of E¢87a) and (27h)
Using (18), we have its general solution:

Fytm, 1)

Fig. 3. The comparison af, (n, 1) of the analytic approximations with the
numerical solutions and Liao’s steady-state red@8 whenM =0, 1, 2
andn = 2: (filled circles) 20th-order HAM approximations; (open circles)
steady-state solution given by Li§23]; (lines) numerical solution.

H. Xu, S.-J. Liao / J. Non-Newtonian Fluid Mech. 129 (2005) 46-55

Fig. 4. The comparison af, (n, 1) of the analytic approximations with the
numerical solutions and Liao’s steady-state req@8 whenM =0, 1, 2
andn = 3: (filled circles) 20th-order HAM approximations; (open circles)
steady-state solution given by Li§@3]; (lines) numerical solution.

Fn(n, &) = F,,(n, &) + C1exp(n) + C2exp() + Cs,
(36)

where the coefficient§1, C2, andC3 are determined by the
boundary condition§27hb), i.e.:

_ 95, 8)

Co=0, (1 ,
877 7/:0

C3=—-C1—-F,(0,8%).

37)

R N NN NN NN ]

0 01 02 03 04 05

g

06 07 08 09 1

Fig. 5. The analytic approximations #f,(0, §) for0 < £ <1whenn =1
given by homotopy analysis method: (solid line) 16th-order approximation;

(filled circles) 20th-order approximation; (open circles) steady-state solution
given by Liao[23].
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Fan(08)

o

0O 01 02 03 04 05

&

06 07 08 059 1

Fig. 6. The analytic approximations f,,(0, &) for 0 < £ < 1 whenn = 2
given by homotopy analysis method: (solid line) 16th-order HAM ap-
proximation; (filled circles) 20th-order HAM approximation; (open circles)
steady-state solution given by Li§23].

In this way, it is easy to solve tHmear Eqs.(27a) and (27b)

one after the other in the order =1, 2, 3, ... by means of
the symbolic computation software such as Mathematica.

4. Analysis of results

Liao[30] proved in general that, as long as a solution series

given by the homotopy analysis method converges, it must be

one of solutions. Note that the solution ser{2§) contains

M=2,1,0

Fn n (On &.o)

UL L L O RN

-2

0.1

02 03 04 05

§

06 07 08 09 1

Fig. 7. The analytic approximations &f,,(0, &) for 0 < £ < 1 whenn =3
given by homotopy analysis method: (solid line) 16th-order HAM ap-
proximation; (filled circles) 20th-order HAM approximation; (open circles)
steady-state solution given by Li§@3].
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Fig. 8. The variation of the velocity profilg,(n, £) whenn = 2 andM = 1.

the auxiliary parameter , for which we can choose a proper
value by plotting so-called -curves to ensure that the solution
serieg(25) converges, as suggested by L[80].

Whené& = 0, our analytic solutions agree well with the
exact solution(10) whenn = 1 and numerical results when
n =2 and 3, as shown ifrig. L Whenn =1 andé =1,
corresponding to the steady-state Newtonian fluid, our ana-
Iytic solution agrees well with the exact soluti@@®)and also
Liao's steady-state result33], as shown ifrig. 2 These ver-
ify the validation of the proposed analytic approach. When
n > 1, corresponding to the non-Newtonian fluid, our an-
alytic solutions agree well with the numerical solutions at
& = 0 (the initial state) ané = 1 (the steady state), as shown
in Figs. 1, 3 and 4Note that all of these analytic results are
obtained by means o= —1/4. Note also that, our analytic

0.9 f

0.8

0.7

0.6

0.5

Fam.&)

0.4

1=0.01,0.05,0.1,0.25,0.5,10

TTTTTIT T T T I T T T T T I T T I T I T T A T T T T T T T T T T T T 10T

0.3
0.2
0.1
0
0.1 TN TN TN TN TN T TN TN SN MO TN TN NN NN TN TR SO N |
1 2 3 4
né 1/3

Fig. 9. The variation of the velocity profilg,(n, £) whenn = 2 andM = 2.
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Fym.&)

t=0.01,0.05,0.1,0.25, 10

OTTTITIIT I T I T I T I T T T T I T I T I T T T I I T T T T T I T T T T T T TTTTT7]

Zy 1 1 i — | 1 — 1 1 1 1 L 1 L L1 1 1 L 1 1 1 1
%y 1 2 3 4 01 0.5 1 15 2 25
e ne
Fig. 10. The variation of the velocity profilé;,(n, §) whenn =3 and Fig. 12. The variation of the profil€,(n, &) whenn = 3 andM =0, 1, 2
M=1 att =0.1.

results ag = 1 agree well with Liao’s steady-state solutions The d\_/f?nat'?n Olf thec\slalocgy progles as i'funcglomr
[23], as shown irFigs. 3 and 4 some different values dfl andn is shown inFigs. 8— e

can see that these velocity profiles develop rapidly from rest
ast increases from zero teo. The velocity profiles for the
different values oM at the same dimensionless time- 0.1,
0.5wher = 3 are as shown iRigs. 12 and 13espectively.
Obviously, at any a given time, the velocity profile given by
the larger value oM is closer to the corresponding initial
ones. It seems that the flow for a larger magnetic parameter
M develops more slowly. However, the transition from the
unsteady initial flow up to the position where boundary layer
start to separate is completely smooth for all valued/of
andn. For the same value of the magnetic parambtethe

In a similar way, it is found that by means ef —1/4 the
solution serie$25)is convergent in the whole range of the di-
mensionless timé € [0, 1] for all considered cases ofand
M, as shown irFigs. 5—7 Note that, as — +o0,i.e.§ — 1,
our analytic solutions tend to Liao’s steady-state re$a8%
Thus, by means of homotopy analysis method, we obtain an-
alytic series solutions which are accurate and uniformly valid
for all dimensionless timé < [0, 1] in the whole spatial re-
gion 0 < 5 < 4o00. Such kind of analytic solutions has never
been reported, to the best of our knowledge.

Fm.&)

1=0.01,0.05,0.1,10

_0.10 1 2] 1 1 1 1 3I 1 1 1 1 4I. _0.1 0 L1l IOI5I L1l I1 L1l I‘1 I5I L1l I2 L1l I2-ISI L1l I3 L1l I3I5I L1
ng™ ng 4
Fig. 11. The variation of the velocity profilg,(n, £) whenn = 3 andM = Fig. 13. The velocity profileF;, (n, §) whenn =3 andM = 0,1, 2 att =

2. 0.5.
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Fam.&)

2 3 4
n E_, 1/(n+1)

Fig. 14. The velocity profileF,(n, £) whenM =0 andn =1, 2, 3, 4 at
t=0.1.

velocity profiles for differenh at the dimensionless time=
0.1 are as shown ifigs. 14 and 15Note that as enlarges,
the velocity profiles trend to the steady state more quickly.
The curves of the local skin friction coefficie@t: (£) ver-
sust for a fixed value of either the power-law indexor
the magnetic parametét are as shown ifrigs. 16 and 17
respectively. Note that, at the same dimensionless tirae
(0, +00) and for the same power-law indexthe skin friction

n=1,2,3

™~

pel L

1 2 3 4 5 6

Fig. 16. The variation of the skin friction coefficient as a functiorr ¢ér
the different power-law inder whenM = 2.

crease the wall friction, (B) this effect is more pronounced for
sheared-thinningn( < 1) than for shear-thickening: (> 1)
fluids. This paper indicates that Liao’s conclusion (A) holds
for all dimensionless time & 7 < +o00. However, Liao’s
conclusion (B), which is based on the variation of the term
—F,,(0, £), is not correct, because the wall friction is di-
rectly proportional to the term{F,, (0, £)]" but not to the
term—F,,(0, &).

coefficient increases as the values of the magnetic parameter Thus, by means of homotopy method, we obtain the ana-

M enlarges. And for fixed values df and the dimensionless

Iytic series solutions which are accurate and uniformly valid

time 7, the skin friction coefficient increases as the values for all dimensionlesstime & t < oo inthe whole spatial re-
of the power-law index decreases. For steady-state flows, gion 0< 5 < oo. To the best of our knowledge, such a kind
Liao [23] concluded that (A) the magnetic field tends to in- of analytic solutions has never been reported.

Fm.&)

né (1)

Fig. 15. The velocity profileF,(n, £) whenM =1 andn =1, 2, 3, 4 at
t=0.1.

ol v e 11
1 2 3 4 5 6
T

Fig. 17. The variation of the skin friction coefficient as a functiorr dér
the different parametévl whenn = 2.
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