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Series solutions of unsteady magnetohydrodynamic flows of
non-Newtonian fluids caused by an impulsively stretching plate

Hang Xu, Shi-Jun Liao∗

School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

Received 27 November 2004; received in revised form 7 April 2005; accepted 8 May 2005

Abstract

In this paper, the unsteady magnetohydrodynamic viscous flows of non-Newtonian fluids caused by an impulsively stretching plate are
studied by means of an analytic technique, namely the homotopy analysis method. We give the analytic series solutions which are accurate and
uniformly valid for all dimensionless time in the whole spatial region 0≤ η < ∞. To the best of authors’ knowledge, such kind of analytic
solutions have been never reported. Besides, the effects of the integral power-law index (n = 1, 2, 3) of the non-Newtonian fluids and the
magnetic parameterM = 0, 1, 2 on the flows are investigated.
© 2005 Published by Elsevier B.V.
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. Introduction

Investigations of boundary layer flows of viscous fluids
ue to a stretching sheet have been the interest of many re-
earchers owing to its important applications in chemical and
etallurgical industries, such as polymer extrusion, drawing
f copper wires, continuous stretching of plastic films and
rtificial fibers, hot rolling, wire drawing, glass-fiber, metal
xtrusion, and metal spinning. Sakiadis[1] initiated the study
f the boundary layer flow over a stretched surface moving
ith a constant velocity and formulated a boundary-layer
quation for two-dimensional and axisymmetric flows. Tsou
t al.[2] considered the effect of heat transfer in the boundary
n a continuous moving surface with a constant velocity and
xperimentally confirmed the numerical results of Sakiadis.
rickson et al.[3] extended the work of Sakiadis to include
lowing or suction at the stretched sheet surface on a contin-
ous solid surface under constant speed and investigated its
ffects on the heat and mass transfer in the boundary layer.
hen and Stroble[4] investigated the effect of a buoyancy-

nduced pressure gradient in a laminar boundary layer of a

∗ Corresponding author. Tel.: +86 21 6293 2676; fax: +86 21 6293 3156.

stretched sheet with constant surface velocity and tem
ture. Jacobi[5] reported numerical results for a stretched
face with uniform motion. The related problems of a stretc
sheet with a linear velocity and different thermal bound
conditions are studied, theoretically, numerically and ex
imentally, by many researchers such as Crane[6], Chen and
Char[7], Gupta and Gupta[8]. Rajagopal[9] studied a bound
ary layer flow of a non-Newtonian fluid due to a stretch
sheet with uniform free stream, and obtained many inte
ing results. Troy et al.[10] established the uniqueness of
steady flow of an incompressible second-order fluid ov
stretching sheet.

In recent years, many investigations have concent
on the magnetohydrodynamic (MHD) flows because o
important applications in metallurgical industry, such as
cooling of continuous strips and filaments drawn throu
quiescent fluid and the purification of molten metals f
non-metallic inclusions. Chakrabarti and Gupta[11] studied
the MHD flow of Newtonian fluids initially at rest, over
stretching sheet at a different uniform temperature. Va
elu and Hadjinicolaou[12] made a analysis to flows and h
transfer characteristics in an electrically conducting fluid
an isothermal sheet. Many works have been reported o
problem of a stretching sheet with a linear velocity in
E-mail addresses:henry629@sjtu.edu.cn (H. Xu), sjliao@sjtu.edu.cn

S.-J. Liao). presence of a magnetic fluid, such as[13–18]. The MHD
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flows of non-Newtonian fluids were initially studied by Sarp-
kaya[19], then followed by Djukic[20,21], Andersson et al.
[22], and Liao[23], etc. Very recently, Liao[24] obtained an
accurate analytic solution of unsteady boundary layer flows
caused by an impulsively stretching plate uniformly valid for
all non-dimensional time,τ. Cheng and Huang[25] consid-
ered the problem of unsteady flows and heat transfer in the
laminar boundary on a linearly accelerating surface with suc-
tion or blowing in the absence and presence of a heat source or
sink.

The homotopy[26] is a basic concept in topology[27].
Based on the homotopy, some numerical techniques such
as the continuation method[28] and the homotopy con-
tinuation method[29] were developed. There is a suite of
FORTRAN subroutines in Netlib for solving nonlinear sys-
tems of equations by homotopy methods, called HOMPACK.
Currently, using the concept of homotopy, Liao[30] devel-
oped a new analytic method for highly nonlinear problems,
namely the homotopy analysis method (HAM). Different
from perturbation techniques[31], the homotopy analysis
method does not depend upon any small or large parameters
and thus is valid for most of nonlinear problems in science
and engineering. Besides, it logically contains other non-
perturbation techniques such as Lyapunov’s small parameter
method[32], the δ-expansion method[33], and Adomian’s
decomposition method[34]. The homotopy analysis method
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whereu and v are the velocity components in thex- and
y-directions,t denotes the time,ρ, σ, B0 andτxy are the den-
sity, electrical conductivity, magnetic field and shear stress,
respectively. The shear tensor is defined by the Ostwald-de-
Wäle model:

τij = 2K(2DklDkl)
(n−1)/2Dij, (2)

where

Dij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (3)

denotes the rate of stretching tensor,K is the consistency coef-
ficient andn is the power-law index. The initial and boundary
conditions are:

t < 0 : u = v = 0, at y ≥ 0, −∞ < x < +∞, (4a)

t ≥ 0 : u = Cx, v = 0, at y = 0, (4b)

t ≥ 0 : u → 0, asy → +∞, (4c)

whereC is a positive constant. Letψ denote the stream func-
tionψ, satisfying:

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (5)

F i-
l

ψ

a

η

T

(

s

F

w

t

n

as been successfully applied to many nonlinear prob
35–40]. The aim of the present paper is to study the
teady MHD viscous flows of non-Newtonian fluids cau
y an impulsively stretching plate, and to investigate the

ect of integral power-law index of these non-Newtonian
ds on the velocity. To the best of authors’ knowledge
ne has reported an analytic solution valid for all dim
ionless time 0≤ τ < ∞ in the whole spatial region 0≤ η

∞.

. Mathematical description

Liao [23] solved the steady magnetohydrodynamic fl
f non-Newtonian fluids over a stretching sheet by mea

he homotopy analysis method. Here, we further conside
nsteady flows of an electrically conducting fluid, obey

he power-law model in the presence of a transverse mag
eld, past a flat sheet lying on the planey = 0. Two equa
ut opposite forces are applied along thex-axis so that th
all is stretched keeping the original fixed. The unste
HD flows of this kind of non-Newtonian fluids are govern
y

∂u

∂x
+ ∂v

∂y
= 0, (1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 1

ρ

∂τxy

∂y
−
(
σB2

0

ρ

)
u, (1b)
ollowing Liao [24] and Nazar et al.[41], we use the sim
arity transformations:

=
(

Kξ

ρC1−2n

)1/(n+1)

x2n/(n+1)F (η, ξ), (6)

nd

= y

(
ρC2−n

Kξ

)1/(n+1)

x(1−n)/(1+n),

ξ = 1 − exp(−τ), τ = Ct. (7)

hen, the governing Eqs.(1a) and (1b)become:

1 − ξ)

(
η

n+ 1

∂2F

∂η2 − ξ
∂2F

∂η∂ξ

)
+ n

(
−∂

2F

∂η2

)n−1
∂3F

∂η3

+ ξ
[

2n

n+ 1
F
∂2F

∂η2 −
(
∂F

∂η

)2

−M
∂F

∂η

]
= 0, (8a)

ubject to the boundary conditions:

(0, ξ) = 0,
∂F (η, ξ)

∂η

∣∣∣∣
η=0

= 1,
∂F (η, ξ)

∂η

∣∣∣∣
η→+∞

= 0,

(8b)

hereM = σB2
0/(ρC) is the magnetic parameter.

Whenξ = 0, corresponding toτ = 0, we have from(8a)
hat(

−∂
2F

∂η2

)n−1
∂3F

∂η3 + η

n+ 1

∂2F

∂η2 = 0, (9a)
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subject to the boundary conditions:

F (0,0) = 0,
∂F (η, ξ)

∂η

∣∣∣∣
η=0,ξ=0

= 1,

∂F (η, ξ)

∂η

∣∣∣∣
η→+∞,ξ=0

= 0. (9b)

Especially, whenξ = 0 andn = 1, Eq. (9a) becomes the
Rayleigh type of equation, and it has the exact solution:

F (η,0) = ηerfc(η/2) + 2√
π

[1 − exp(−η2/4)]. (10)

Whenξ = 1, corresponding toτ → +∞, we have from
(8a)that

n

(
−∂

2F

∂η2

)n−1
∂3F

∂η3 + 2n

n+ 1
F
∂2F

∂η2 −
(
∂F

∂η

)2

−M
∂F

∂η

= 0, (11a)

subject to the boundary conditions:

F (0,1) = 0,
∂F (η, ξ)

∂η

∣∣∣∣
η=0,ξ=1

= 1,

∣∣

W

F

F s,
c

C

w s
n

3

3
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{ξkηm exp(−nη)| k ≥ 0, n ≥ 0,m ≥ 0} (14)

in the form:

F (η, ξ) =
+∞∑
k=0

+∞∑
m=0

+∞∑
n=1

akm,nξ
kηm exp(−nη), (15)

whereakm,n is a coefficient. This provides us with the so-
calledRule of Solution Expressionsfor F (η, ξ). According
to the Rule of Solution Expression(15) and from(8a) and
(8b), it is straightforward to choose:

F0(η, ξ) = 1 − exp(−η) (16)

as the initial approximation ofF (η, ξ), and besides to choose:

L[Φ(ξ, η; q)] = ∂3Φ

∂η3 − ∂Φ

∂η
(17)

as the auxiliary linear operator, which has the following
property:

L[C1 exp(−η) + C2 exp(η) + C3] = 0, (18)

whereC1, C2, andC3 are constants. Based on(8a), we are
led to define the nonlinear operator:

N

L t the
s

(

s

Φ

)

w
er

d

Φ

a

Φ

r
f
c

∂F (η, ξ)

∂η
∣∣
η→+∞,ξ=1

= 0. (11b)

henξ = 1 andn = 1, Eq.(11a)has the exact solution:

(η,1) = 1 − exp(−√
1 +Mη)√

1 +M
. (12)

or details, please refer to Liao[23] for the steady-state flow
orresponding toξ = 1.

The skin frictionCf (ξ) at the wall is given by:

f (ξ) = τw

ρ(Cx)2
= ξ−n/(n+1)[−Fηη(0, ξ)]nRe−1/(1+n),

(13)

here Re = (Cx)2−nxn/(K/ρ) is the local Reynold
umber.

. Homotopy analysis method

.1. Zeroth-order deformation equation

The steady-state magnetohydrodynamic flows of
ewtonian fluids over a stretching sheet was solved by

23]. Recently, by means of homotopy analysis met
iao [24] obtained accurate solutions of a kind of unste
oundary layer flows of a Newtonian fluid caused by

mpulsively stretching flat plate. Following Liao[23,24], we
xpressF (η, ξ) by a set of base functions:
[Φ(η, ξ; q)]

= (1 − ξ)

(
η

n+ 1

∂2Φ

∂η2 − ξ
∂2Φ

∂ξ∂η

)
+ n

(
−∂

2Φ

∂η2

)n−1
∂3Φ

∂η3

+ξ
[

2n

n+ 1
Φ
∂2Φ

∂η2 −
(
∂Φ

∂η

)2

−M
∂Φ

∂η

]
. (19)

et denote a non-zero auxiliary parameter. We construc
o-called zeroth-order deformation equation:

1 − q)L[Φ(η, ξ; q) − F0(η, ξ)] = q N[Φ(η, ξ; q)], (20a)

ubject to the boundary conditions:

(0, ξ; q) = 0,
∂Φ(η, ξ; q)

∂η

∣∣∣∣
η=0

= 0,
∂Φ(η, ξ; q)

∂η

∣∣∣∣
η=+∞

= 0, (20b

hereq ∈ [0,1] is an embedding parameter.
Obviously, whenq = 0 andq = 1, the above zeroth-ord

eformation Eqs.(20a) and (20b)have the solutions:

(η, ξ; 0) = F0(η, ξ), (21)

nd

(η, ξ; 1) = F (η, ξ), (22)

espectively. Thus asq increases from 0 to 1,Φ(η, ξ; q) varies
rom the initial guessF0(η, ξ) to the solutionF (η, ξ) of the
onsidered unsteady problem. So, expandingΦ(η, ξ; q) in
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Taylor’s series with respect to the embedding parameterq,
we have:

Φ(η, ξ; q) = Φ(η, ξ,0) +
+∞∑
m=1

Fm(η, ξ)qm, (23)

where

Fm(η, ξ) = 1

m!

∂mΦ(η, ξ; q)

∂qm

∣∣∣∣
q=0

. (24)

Note that(20a)contains the auxiliary parameter . Assuming
that is properly chosen so that the series(23) is convergent
atq = 1, we have, using(21) and (22), the solution series:

F (η, ξ) = F0(η, ξ) +
+∞∑
m=1

Fm(η, ξ). (25)

3.2. High-order deformation equation

For the sake of simplicity, we define the vector:

�Fm = {F0, F1, F2, . . . , Fm}. (26)

Differentiating the zeroth-order deformation equations(20a)
m times with respect toq, then settingq = 0, and finally
dividing them bym!, we obtain themth-order deformation
e

L

s

F

w

R

a

χ

N ex
n

R

whenn = 2, it holds

Rm( �Fm−1) = (1 − ξ)

(
η

3

∂2Fm−1

∂η2 − ξ
∂2Fm−1

∂η∂ξ

)
− 2Bm−1

+ξ
[
m−1∑
i=0

4

3
Fi
∂2Fm−1−i
∂η2 −

m−1∑
i=0

∂Fi

∂η

∂Fm−i−1

∂η

−M∂Fm−1

∂η

]
, (31)

whenn = 3, it reads

Rm( �Fm−1) = (1 − ξ)

(
η

4

∂2Fm−1

∂η2 − ξ
∂2Fm−1

∂η∂ξ

)

+ 3
m−1∑
i=0

Ai
∂3Fm−1−i
∂η3 + ξ

[
m−1∑
i=0

3

2
Fi
∂2Fm−1−i
∂η2

−
m−1∑
i=0

∂Fi

∂η

∂Fm−i−1

∂η
−M

∂Fm−1

∂η

]
, (32)

and whenn = 4, we have:

Rm( �Fm−1) = (1 − ξ)

(
η

5

∂2Fm−1

∂η2 − ξ
∂2Fm−1

∂η∂ξ

)

F e
e r
H
l on
w

− 4
m−1∑
i=0

AiBm−1−i + ξ

[
m−1∑
i=0

8

5
Fi
∂2Fm−1−i
∂η2

−
m−1∑
i=0

∂Fi

∂η

∂Fm−i−1

∂η
−M

∂Fm−1

∂η

]
, (33)

ig. 1. The comparison ofFη(η,0) of the analytic approximation with th
xact and numerical solutions whenn = 1, 2, 3: (filled circles) 20th-orde
AM approximations; (solid line) exact solution(10)whenn = 1; (dashed

ine) numerical solution whenn = 2; (dash-dotted line) numerical soluti
henn = 3.
quations:

[Fm(η, ξ) − χmFm−1(η, ξ)] = Rm( �Fm−1), (27a)

ubject to the boundary conditions:

m(0, ξ) = 0,
∂Fm(η, ξ)

∂η

∣∣∣∣
η=0

= 0,
∂Fm(η, ξ)

∂η

∣∣∣∣
η=+∞

= 0, (27b)

here

m( �Fm−1) = 1

(m− 1)!

∂m−1N[Φ(η, ξ; q)]

∂qm−1

∣∣∣∣
q=0

(28)

nd

m =
{

0,m = 1,

1,m > 1.
(29)

ote thatRm( �Fm−1) depends on the integer power-law ind
. Whenn = 1, we have:

m( �Fm−1) = (1 − ξ)

(
η

2

∂2Fm−1

∂η2 − ξ
∂2Fm−1

∂η∂ξ

)
+ ∂3Fm−1

∂η3

+ ξ
[
m−1∑
i=0

Fi
∂2Fm−1−i
∂η2 −

m−1∑
i=0

∂Fi

∂η

∂Fm−i−1

∂η

−M∂Fm−1

∂η

]
, (30)
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Fig. 2. The comparison ofFη(η,1) of the analytic approximations with the
exact solution(12) and Liao’s steady-state results[23] whenM = 0, 1, 2
andn = 1: (filled circles) 20th-order HAM approximations; (open circles)
steady-state solution given by Liao[23]; (lines) exact solution(12).

respectively, where

Aj =
j∑
i=0

∂2Fi

∂η2

∂2Fj−i
∂η2 , (34)

Bj =
j∑
i=0

∂2Fi

∂η2

∂3Fj−i
∂η3 . (35)

LetF∗
m(η, ξ) denote a special solution of Eqs.(27a) and (27b).

Using(18), we have its general solution:

F he
n
a es)
s

Fig. 4. The comparison ofFη(η,1) of the analytic approximations with the
numerical solutions and Liao’s steady-state results[23] whenM = 0, 1, 2
andn = 3: (filled circles) 20th-order HAM approximations; (open circles)
steady-state solution given by Liao[23]; (lines) numerical solution.

Fm(η, ξ) = F∗
m(η, ξ) + C1 exp(−η) + C2 exp(η) + C3,

(36)

where the coefficientsC1,C2, andC3 are determined by the
boundary conditions(27b), i.e.:

C2 = 0, C1 = ∂F∗
m(η, ξ)

∂η

∣∣∣∣
η=0

, C3 = −C1 − F∗
m(0, ξ).

(37)

F
g tion;
( lution
g

ig. 3. The comparison ofFη(η,1) of the analytic approximations with t
umerical solutions and Liao’s steady-state results[23] whenM = 0, 1, 2
ndn = 2: (filled circles) 20th-order HAM approximations; (open circl
teady-state solution given by Liao[23]; (lines) numerical solution.
ig. 5. The analytic approximations ofFηη(0, ξ) for 0 ≤ ξ ≤ 1 whenn = 1
iven by homotopy analysis method: (solid line) 16th-order approxima
filled circles) 20th-order approximation; (open circles) steady-state so
iven by Liao[23].
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Fig. 6. The analytic approximations ofFηη(0, ξ) for 0 ≤ ξ ≤ 1 whenn = 2
given by homotopy analysis method: (solid line) 16th-order HAM ap-
proximation; (filled circles) 20th-order HAM approximation; (open circles)
steady-state solution given by Liao[23].

In this way, it is easy to solve thelinearEqs.(27a) and (27b)
one after the other in the orderm = 1,2,3, . . . by means of
the symbolic computation software such as Mathematica.

4. Analysis of results

Liao[30] proved in general that, as long as a solution series
given by the homotopy analysis method converges, it must be
one of solutions. Note that the solution series(25) contains

F
g ap-
p les)
s

Fig. 8. The variation of the velocity profileFη(η, ξ) whenn = 2 andM = 1.

the auxiliary parameter , for which we can choose a proper
value by plotting so-called -curves to ensure that the solution
series(25)converges, as suggested by Liao[30].

When ξ = 0, our analytic solutions agree well with the
exact solution(10) whenn = 1 and numerical results when
n = 2 and 3, as shown inFig. 1. Whenn = 1 andξ = 1,
corresponding to the steady-state Newtonian fluid, our ana-
lytic solution agrees well with the exact solution(12)and also
Liao’s steady-state results[23], as shown inFig. 2. These ver-
ify the validation of the proposed analytic approach. When
n > 1, corresponding to the non-Newtonian fluid, our an-
alytic solutions agree well with the numerical solutions at
ξ = 0 (the initial state) andξ = 1 (the steady state), as shown
in Figs. 1, 3 and 4. Note that all of these analytic results are
obtained by means of= −1/4. Note also that, our analytic

F

ig. 7. The analytic approximations ofFηη(0, ξ) for 0 ≤ ξ ≤ 1 whenn = 3
iven by homotopy analysis method: (solid line) 16th-order HAM
roximation; (filled circles) 20th-order HAM approximation; (open circ
teady-state solution given by Liao[23].
 ig. 9. The variation of the velocity profileFη(η, ξ) whenn = 2 andM = 2.
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Fig. 10. The variation of the velocity profileFη(η, ξ) when n = 3 and
M = 1.

results atξ = 1 agree well with Liao’s steady-state solutions
[23], as shown inFigs. 3 and 4.

In a similar way, it is found that by means of= −1/4 the
solution series(25)is convergent in the whole range of the di-
mensionless timeξ ∈ [0,1] for all considered cases ofn and
M, as shown inFigs. 5–7. Note that, asτ → +∞, i.e.ξ → 1,
our analytic solutions tend to Liao’s steady-state results[23].
Thus, by means of homotopy analysis method, we obtain an-
alytic series solutions which are accurate and uniformly valid
for all dimensionless timeξ ∈ [0,1] in the whole spatial re-
gion 0≤ η < +∞. Such kind of analytic solutions has never
been reported, to the best of our knowledge.

F
2

Fig. 12. The variation of the profileFη(η, ξ) whenn = 3 andM = 0, 1, 2
at τ = 0.1.

The variation of the velocity profiles as a function ofτ for
some different values ofM andn is shown inFigs. 8–11. We
can see that these velocity profiles develop rapidly from rest
asτ increases from zero to∞. The velocity profiles for the
different values ofM at the same dimensionless timeτ = 0.1,
0.5 whenn = 3 are as shown inFigs. 12 and 13, respectively.
Obviously, at any a given time, the velocity profile given by
the larger value ofM is closer to the corresponding initial
ones. It seems that the flow for a larger magnetic parameter
M develops more slowly. However, the transition from the
unsteady initial flow up to the position where boundary layer
start to separate is completely smooth for all values ofM
andn. For the same value of the magnetic parameterM, the

F
0

ig. 11. The variation of the velocity profileFη(η, ξ) whenn = 3 andM =
.

ig. 13. The velocity profileFη(η, ξ) whenn = 3 andM = 0,1,2 at τ =
.5.
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Fig. 14. The velocity profileFη(η, ξ) whenM = 0 andn = 1, 2, 3, 4 at
τ = 0.1.

velocity profiles for differentnat the dimensionless timeτ =
0.1 are as shown inFigs. 14 and 15. Note that asn enlarges,
the velocity profiles trend to the steady state more quickly.

The curves of the local skin friction coefficientCf (ξ) ver-
susτ for a fixed value of either the power-law indexn or
the magnetic parameterM are as shown inFigs. 16 and 17,
respectively. Note that, at the same dimensionless timeτ ∈
(0,+∞) and for the same power-law indexn, the skin friction
coefficient increases as the values of the magnetic parameter
M enlarges. And for fixed values ofM and the dimensionless
time τ, the skin friction coefficient increases as the values
of the power-law indexn decreases. For steady-state flows,
Liao [23] concluded that (A) the magnetic field tends to in-

F t
τ

Fig. 16. The variation of the skin friction coefficient as a function ofτ for
the different power-law indexnwhenM = 2.

crease the wall friction, (B) this effect is more pronounced for
sheared-thinning (n < 1) than for shear-thickening (n > 1)
fluids. This paper indicates that Liao’s conclusion (A) holds
for all dimensionless time 0≤ τ < +∞. However, Liao’s
conclusion (B), which is based on the variation of the term
−Fηη(0, ξ), is not correct, because the wall friction is di-
rectly proportional to the term [−Fηη(0, ξ)]n but not to the
term−Fηη(0, ξ).

Thus, by means of homotopy method, we obtain the ana-
lytic series solutions which are accurate and uniformly valid
for all dimensionless time 0≤ τ < ∞ in the whole spatial re-
gion 0≤ η < ∞. To the best of our knowledge, such a kind
of analytic solutions has never been reported.

F
t

ig. 15. The velocity profileFη(η, ξ) whenM = 1 andn = 1, 2, 3, 4 a
= 0.1.
ig. 17. The variation of the skin friction coefficient as a function ofτ for
he different parameterM whenn = 2.
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5. Conclusions

In this paper, we apply the homotopy analysis method
to study the unsteady magnetohydrodynamic (MHD) vis-
cous flows of non-Newtonian fluids caused by an impul-
sively stretching plate. Different from previous analytic so-
lutions, our series solutions are valid forall dimensionless
time 0≤ τ < ∞ in the whole spatial region 0≤ η < ∞. To
the best of our knowledge, such kind of analytic solutions
has never been reported. The effects of the integral power-
law index (n = 1, 2, 3, 4) of the non-Newtonian fluids and the
magnetic parameterM = 0, 1, 2 on the flows are investigated.
We show that, in the whole dimensionless time 0≤ τ < +∞,
the magnetic field tends to increase the wall friction, and that
this effect is more pronounced for non-Newtonian fluids with
larger power-law index.

The proposed analytic approach has general meaning and
thus may be applied in a similar way to other unsteady non-
linear problems to get accurate analytic solutions valid for all
dimensionless time.
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