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The steady-state interaction of acoustic–gravity waves in an ocean of uniform depth
is researched theoretically by means of the homotopy analysis method (HAM), an
analytic approximation method for nonlinear problems. Considering compressibility,
a hydroacoustic wave can be produced by the interaction of two progressive gravity
waves with the same wavelength travelling in opposite directions, which contains
an infinite number of small denominators in the framework of the classical analytic
approximation methods, like perturbation methods. Using the HAM, the infinite
number of small denominators are avoided once and for all by means of choosing a
proper auxiliary linear operator. Besides, by choosing a proper ‘convergence-control
parameter’, convergent series solutions of the steady-state acoustic–gravity waves are
obtained in cases of both non-resonance and exact resonance. It is found, for the first
time, that the steady-state resonant acoustic–gravity waves widely exist. In addition,
the two primary wave components and the resonant hydroacoustic wave component
might occupy most of wave energy. It is found that the dynamic pressure on the
sea bottom caused by the resonant hydroacoustic wave component is much larger
than that in the case of non-resonance, which might even trigger microseisms of the
ocean floor. All of these might deepen our understanding and enrich our knowledge
of acoustic–gravity waves.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
The first theoretical work on hydroacoustic waves was done by Longuet-Higgins

(1950), who argued that the water can be treated as incompressible only when
the time taken for the disturbance to propagate to the bottom is small compared
to the period of waves. Considering the compressibility of water, Longuet-Higgins
(1950) found that hydroacoustic waves, which affect the whole water column, can be
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112 X. Yang, F. Dias and S. Liao

generated by the nonlinear interaction of two progressive gravity waves with the same
wavelength travelling in opposite directions. Longuet-Higgins (1950) also mentioned
that the resonant triad interactions of acoustic–gravity waves exist at the special water
depths h≈ (n+ 0.5)πc/ω3, where n= 0, 1, 2, . . . , h is the water depth, c is the speed
of sound in the water, which is of the order of 1500 m s−1 and ω3 is the frequency
of the resulting hydroacoustic wave. However, Longuet-Higgins (1950) did not obtain
solutions of resonant acoustic–gravity waves. Later, Kibblewhite & Wu (1991) argued
that the hydroacoustic wave can be generated by two opposite gravity waves with
slightly different wavenumbers. The interaction between two primary gravity waves
and the resulting hydroacoustic wave can be described as

k1 + k2 = k3, ω1 +ω2 =ω3, 0 6 |k3|<ω3/c, (1.1a−c)

unskip where k1, k2 and ω1, ω2 are the wavenumbers and wave frequencies of
two primary gravity waves, k3 is the horizontal component of the wavenumber of
the hydroacoustic wave. For the Longuet-Higgins case, |k3| is equal to 0. When
|k3| > ω3/c, the hydroacoustic response degenerates into an inhomogeneous wave
decaying with increasing water depth. In this paper, we consider the non-resonance
and resonance cases of Longuet-Higgins with |k3|= 0 and one more general resonance
case with 0< |k3|<ω3/c. The interactions of two gravity waves travelling in opposite
directions were investigated by many researchers, such as Kibblewhite & Ewans
(1985), Webb (1992, 1998), Bowen et al. (2003), Naugolnikh & Rybak (2003),
Farrell & Munk (2010), Ardhuin & Herbers (2013), Ardhuin et al. (2013). But none
of them focussed on the exact resonance of waves.

Recently, considering the resonance of two opposite gravity waves and the resulting
hydroacoustic wave, Kadri & Stiassnie (2013) found that the condition for the exactly
resonating triads is

ω2
3 = gλ3 tanh(λ3h), (1.2)

where g is the gravitational acceleration, λ3 is a parameter associated with the
vertical wavenumber of the hydroacoustic wave. They found that when the resonance
condition is satisfied, the amplitude equations of the resonant acoustic–gravity triads
are the same as those of resonant gravity triads (Phillips 1960; Benney 1962;
Longuet-Higgins 1962; Bretherton 1964). This conclusion was confirmed by Kadri
& Akylas (2016), who obtained resonant acoustic–gravity waves with periodically
changing wave spectrum and found that the interaction time scale is longer than
that of a standard resonant triad. Note that, without considering the compressibility
of the water, three-wave resonance does not occur for gravity waves (Dyachenko &
Zakharov 1994). Kadri (2015) followed Longuet-Higgins (1950) to generalize the
resonance condition of the acoustic–gravity waves and found that the resonances
given by Longuet-Higgins (1950) are just particular cases. Kadri (2015) also got the
solution of the Longuet-Higgins resonance case, which is similar to that obtained by
Kadri & Stiassnie (2013). However, to the best of our knowledge, the steady-state
resonant acoustic–gravity waves with time-independent wave spectrum have never
been obtained before in water of uniform depth.

On the other hand, the studies of two progressive gravity waves in opposite
directions focused on the pressure field of the water, especially on the bottom. Even
without considering the compressibility of the water, the interaction can produce
a second-order pressure term that does not attenuate with depth. In particular,
Renzi & Dias (2014) mentioned that the compressibility is not the main driving
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The HAM for acoustic–gravity waves 113

mechanism. This conclusion was confirmed by Pellet et al. (2017) who obtained
a second-order pressure field generated by two opposite travelling gravity waves,
which is independent of water depth and periodic in time with twice the frequency
of the primary gravity waves. Besides, considering the compressibility of the water,
Longuet-Higgins (1950) and Kadri & Stiassnie (2013) obtained the solution of
acoustic–gravity waves in the case of non-resonance. Kadri & Stiassnie (2013)
and Kadri & Akylas (2016) got the solution of exact resonance acoustic–gravity
waves with periodic wave spectrum. So, the pressure on the bottom of the water,
which is dependent of water depth and time, can be obtained directly. In addition, the
hydroacoustic waves produced by a moving bottom were studied by Yamamoto (1982),
Stiassnie (2010), Oliveira & Kadri (2016) and Kadri (2017). Eyov et al. (2013) and
Kadri & Stiassnie (2012) studied effects of different hydroacoustic modes on two
types of bottoms (an elastic bottom and a bottom with a step) in a compressible
ocean. Note that these studies related to the motion of the bottom did not consider
the exact resonance.

In this paper, we first consider the non-resonance conditions of acoustic–gravity
waves, the solutions of which have been obtained previously, for example by
Longuet-Higgins (1950) and Kadri & Stiassnie (2013). But, more importantly, we
focus on the steady-state resonant triad interactions of acoustic–gravity waves with
time-independent wave spectrum, which have never been obtained before. We use the
resonance condition

ω2
3 = g(λ2

3 − γ
2)/[λ3 coth(λ3h)− γ ], (1.3)

where γ = g/2c2, which is similar to (1.2) given by Kadri & Stiassnie (2013), who
found that all amplitudes of the wave components vary periodically, i.e. with periodic
wave spectrum, when the resonance condition is exactly satisfied. Are there any
steady-state resonant acoustic–gravity waves whose spectrum is independent of time?
In this steady-state system, there is no exchange of wave energy between different
wave components, i.e. all amplitudes of wave components are independent of time. For
the normal gravity waves, the answer is yes. Liao (2011b) found steady-state resonant
gravity waves in deep water by means of the homotopy analysis method (HAM) (Liao
1992, 2003, 2010, 2011a; Van Gorder & Vajravelu 2008; Vajravelu & Van Gorder
2012; Zhong & Liao 2017, 2018a,b). Then it was found that the steady-state resonant
gravity waves exist extensively in both infinite and finite water depth by Xu et al.
(2012) and Liu & Liao (2014), which were even confirmed experimentally by Liu
et al. (2015). In addition, Liao, Xu & Stiassnie (2016) successfully applied the HAM
to obtain the steady-state nearly resonant gravity waves in deep water, and Liu, Xu
& Liao (2018) found finite amplitude steady-state waves with multiple near-resonant
interactions. The purpose of this paper is to confirm the existence of the steady-state
resonant acoustic–gravity waves.

It has been commonly accepted that the generation of hydroacoustic waves in the
ocean is due to the nonlinear interaction of two gravity waves that travel in opposite
directions. If we ignore the compressibility of water, two gravity waves travelling
in opposite directions with the same amplitude and wavelength create a standing
wave with an infinite number of ‘singularities’ (i.e. zero denominators) when one
uses classical methods, like perturbation methods. As mentioned by Dias & Bridges
(2006), most studies of standing waves are based on semi-analytical methods and
numerical methods because of the inherent analytical difficulties. So, the first obstacle
of acoustic–gravity waves in deep water is how to handle the small denominators
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114 X. Yang, F. Dias and S. Liao

which are similar to the ‘singularities’ in the problem of standing waves, which is a
big challenge in the framework of perturbation methods, as mentioned by Madsen &
Fuhrman (2012). Besides, when the exact resonance condition is satisfied, one more
‘singularity’ corresponding to the hydroacoustic wave component must be considered.

In this paper, the acoustic–gravity wave problem is solved by means of the
homotopy analysis method (HAM), an analytic technique for nonlinear problems.
Using the HAM, the infinite number of small denominators in the acoustic–gravity
waves problem can be avoided conveniently once and for all by means of choosing
a proper auxiliary linear operator, as described later in this paper. Besides, different
from perturbation methods, the HAM has nothing to do with any small/large
physical parameters. More importantly, it provides us a simple way to guarantee
the convergence of the solution.

The structure of the paper is presented below. The mathematical formulae are
described in § 2. The solutions of non-resonant acoustic–gravity waves are given
in § 3.1. The steady-state resonant triad interactions of acoustic–gravity waves are
studied in detail in § 3.2. Conclusions and discussions are presented in § 4.

2. Mathematical formulae
2.1. Governing equations

Let us consider the nonlinear interactions of two progressive gravity waves and one
hydroacoustic wave in water of uniform depth. A Cartesian coordinate system is
adopted with the x-axis and the y-axis located on the mean water plane and the
z-axis pointing vertically upwards. Longuet-Higgins (1950) derived the water wave
equations together with their boundary conditions in a heavy compressible fluid, in
the absence of viscosity and surface tension. The governing equation for the velocity
potential has linear, quadratic and cubic terms. Kadri & Stiassnie (2013) used the
same governing equation as Longuet-Higgins, without the cubic term. Here we use
the same equation as Longuet-Higgins without the nonlinear terms. The justification is
given in the paper by Longuet-Higgins (1950) itself. Indeed, Longuet-Higgins solved
for the velocity potential by using a method of successive approximations. At second
order, the velocity potential given by his equation (159) has five types of terms.
Longuet-Higgins writes below his equation (169) that the first two terms in equation
(159) are negligible compared with the fourth, and then writes a simplified expression
for the second-order velocity potential (see his equation (172)). We checked that this
is equivalent to neglecting the quadratic terms in the governing equation. Therefore,
in our paper, we use the governing equation

∂2ϕ

∂t2
− c2
∇

2ϕ + g
∂ϕ

∂z
= 0, −h 6 z 6 η(x, y, t), (x, y) ∈R2, (2.1)

subject to the boundary conditions:

∂2ϕ

∂t2
+ g

∂ϕ

∂z
+
∂|∇ϕ|2

∂t
+∇ϕ · ∇

(
1
2
|∇ϕ|2

)
= 0, on z= η(x, y, t), (2.2)

gη+
∂ϕ

∂t
+

1
2
|∇ϕ|2 = 0, on z= η(x, y, t), (2.3)

lim
z→−h

∂ϕ

∂z
= 0, (2.4)
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The HAM for acoustic–gravity waves 115

where

∇= i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(2.5)

is a linear operator with i, j, k denoting the unit vector in the x, y, z direction, ϕ is the
velocity potential, η is the wave elevation, t denotes the time, h is the water depth,
c is the speed of sound in water, g is the acceleration due to gravity, respectively.
Note that the governing equation (2.1) was also used by Kadri & Stiassnie (2013).
The pressure field of the water can be obtained by Bernoulli’s equation

p = pa − ρgz− ρ
(
∂ϕ

∂t
+

1
2
∂ϕ2

∂x
+

1
2
∂ϕ2

∂y
+

1
2
∂ϕ2

∂z

)
= pa − ρgz+ pd, −h 6 z 6 η(x, y, t), (x, y) ∈R2, (2.6)

where pa − ρgz is the hydrostatic pressure and pd is the dynamic pressure,
ρ = 1025 kg m−3.

The linear solutions of the governing equations (2.1)–(2.4) given by Dalrymple &
Rogers (2006) read

ϕ =
giÃ
2ω
λ cosh[λ(h+ z)] − γ sinh[λ(h+ z)]

λ cosh(λh)− γ sinh(λh)
eγ zei(k·r−ωt), (2.7)

where γ = g/2c2, k2
= λ2
+ω2/c2

− γ 2 and the dispersion relation is given by

ω2
= g(λ2

− γ 2)/[λ coth(λh)− γ ], (2.8)

where Ã denotes the wave amplitude, k is the wavenumber, k = |k|, ω is the wave
frequency and r= xi+ yj.

Let σi denote the actual wave frequency of two primary gravity waves. Due to the
weakly nonlinearity on the free surface of the water, the actual wave frequency σi is
slightly different from the linear frequency ωi. Write

εi =
σi

ωi
, i= 1, 2, (2.9)

where the value of εi is slightly different from 1. Then, we define the variables

ξi = ki · r− σit, i= 1, 2. (2.10)

For steady-state wave systems, all wave amplitudes ai, wavenumbers ki and actual
wave frequencies σi, where i= 1, 2, are time independent. Using the new variables ξi,
the original initial/boundary-value problem governed by (2.1)–(2.4) can be transformed
into a boundary-value one. In the new coordinate system (ξ1, ξ2, z), the governing
equation (2.1) becomes

2∑
i=1

2∑
j=1

σiσj
∂2ϕ

∂ξiξj
− c2

2∑
i=1

2∑
j=1

ki · kj
∂2ϕ

∂ξiξj

− c2 ∂
2ϕ

∂z2
+ g

∂ϕ

∂z
= 0, −h 6 z 6 η(ξ1, ξ2), (2.11)
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116 X. Yang, F. Dias and S. Liao

subject to the two boundary conditions on the unknown free surface z= η(ξ1, ξ2),

N1[ϕ, σ1, σ2] =

2∑
i=1

2∑
j=1

σiσj
∂2ϕ

∂ξiξj
+ g

∂ϕ

∂z
− 2

2∑
i=1

σi
∂f
∂ξi

+

2∑
i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂f
∂ξj
+
∂ϕ

∂z
∂f
∂z
= 0, on z= η(ξ1, ξ2), (2.12)

N2[ϕ, η, σ1, σ2] = η−
1
g

(
2∑

i=1

σi
∂ϕ

∂ξi
− f

)
= 0, on z= η(ξ1, ξ2), (2.13)

and one impermeable condition at the bottom,

lim
z→−h

∂ϕ

∂z
= 0, (2.14)

where

f =
1
2

[
2∑

i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂ϕ

∂ξj
+

(
∂ϕ

∂z

)2
]

(2.15)

and N1 and N2 are two nonlinear operators defined above.
For a steady-state wave system, there is no exchange of wave energy between

different wave components, i.e. all physical quantities related to the wave systems are
constant. Thus, the steady-state wave elevation η(ξ1, ξ2) can be expressed by

η(ξ1, ξ2)=

+∞∑
m1=0

+∞∑
m2=−∞

am1,m2 cos(m1ξ1 +m2ξ2), (2.16)

where am1,m2 is a constant to be determined later. Similarly, according to the governing
equations (2.11) and the bottom boundary condition (2.14), the velocity potential
ϕ(ξ1, ξ2, z) should be in the form

ϕ(ξ1, ξ2, z)=
+∞∑

m1=0

+∞∑
m2=−∞

bm1,m2Ψm1,m2(ξ1, ξ2, z), (2.17)

with the definition

Ψm1,m2(ξ1, ξ2, z) =
λm1,m2 cosh[λm1,m2(h+ z)] − γ sinh[λm1,m2(h+ z)]

λm1,m2 cosh(λm1,m2h)− γ sinh(λm1,m2h)
× eγ z sin(m1ξ1 +m2ξ2), (2.18)

where bm1,m2 is a constant to be determined later. It should be emphasized that
(2.17) automatically satisfies the bottom boundary condition (2.14). It also satisfies
the governing equation (2.11), provided that k2

m1,m2
= λ2

m1,m2
+ σ 2

m1,m2
/c2
− γ 2, where

km1,m2 = |m1k1 + m2k2|, σm1,m2 = m1σ1 + m2σ2. Because the nonlinearities in the
paper of all examples are weak, we choose λ2

m1,m2
≈ k2

m1,m2
− ω2

m1,m2
/c2
+ γ 2, where

ωm1,m2 = m1ω1 + m2ω2. The corresponding parameter λ in (2.7) is λm1,m2 . Thus, the
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The HAM for acoustic–gravity waves 117

unknown coefficients am1,m2 and bm1,m2 are determined by the two fully nonlinear
boundary conditions (2.12) and (2.13). Once the velocity potential is obtained, we
can directly obtain the pressure field of the water from (2.6). Here, we focus on the
dynamic pressure pd in the whole water field. From (2.17), the dynamic pressure pd
is in the form as

pd(ξ1, ξ2, z)= ρ
+∞∑

m1=0

+∞∑
m2=−∞

(
ω2

m1,m2
+

1
2

k2
m1,m2
−

1
2
λ2

m1,m2

)
bm1,m2Ψm1,m2 . (2.19)

Based on (1.1a–c), we consider the case k1 = |k1| slightly different from k2 = |k2|.
When m1 6= m2, the value of (ω2

m1,m2
/c2
− γ 2) is very small (the frequency ωi of

the primary waves considered in this paper is around 1 s−1) compared to km1,m2 , so
that λm1,m2 ≈ km1,m2 , which represents gravity waves in water of uniform depth. When
m1 = m2, km1,m2 is very small. λm1,m2 is an imaginary number, which represents the
hydroacoustic wave. Further, when m1=m2> 1, the corresponding hydroacoustic wave
is generated by two high-order gravity waves. In this paper, we focus on the resulting
hydroacoustic wave, when m1 =m2 = 1.

2.2. Solution procedure
In 2011, Liao (2011b) successfully applied the HAM to obtain the solutions of
steady-state resonant gravity waves governed by the fully nonlinear wave equations.
Thereafter, Xu et al. (2012), Liu & Liao (2014), Liao et al. (2016) and Liu et al.
(2018) made further contributions in the study of steady-state resonant gravity waves.
Detailed mathematical derivations can be found in these articles. So, for the sake of
simplicity, we just give some important formulae here.

Let q ∈ [0, 1] denote an embedding parameter. In the framework of HAM, we first
construct a family of solutions Φ(ξ1, ξ2, z;q), ζ (ξ1, ξ2;q), Λ1(q) and Λ2(q) in q∈[0,1]
by means of the so-called zeroth-order deformation equations,

2∑
i=1

2∑
j=1

σiσj
∂2Φ

∂ξiξj
− c2

2∑
i=1

2∑
j=1

ki · kj
∂2Φ

∂ξiξj

− c2 ∂
2Φ

∂z2
+ g

∂Φ

∂z
= 0, −h 6 z 6 ζ (ξ1, ξ2; q), (2.20)

subject to the two boundary conditions on the unknown wave elevation z=η(ξ1, ξ2;q)

(1− q)L∗[Φ(ξ1, ξ2, z; q)− ϕ0(ξ1, ξ2, z)]=c0qN1[Φ(ξ1, ξ2, z; q), Λ1(q), Λ2(q)], (2.21)
(1− q)ζ (ξ1, ξ2; q)= c0qN2[Φ(ξ1, ξ2, z; q), ζ (ξ1, ξ2; q), Λ1(q), Λ2(q)], (2.22)

and the impermeable condition at the bottom

lim
z→−h

∂Φ

∂z
= 0, (2.23)

where N1 and N2 are the two nonlinear operators defined by (2.12) and (2.13), L∗ is
an auxiliary linear operator and ϕ0(ξ1, ξ2, z) is an initial guess of ϕ(ξ1, ξ2, z), c0 6= 0 is
the so-called ‘convergence-control parameter’ without physical meaning, respectively.
Here, Φ, ζ , Λ1, Λ2 correspond to the unknown ϕ, η, σ1, σ2, respectively. It should
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be emphasized that we have great freedom to choose the auxiliary linear operator.
Obviously, when q= 0,

Φ(ξ1, ξ2, z; 0)= ϕ0(ξ1, ξ2, z), ζ (ξ1, ξ2; 0)= 0. (2.24a,b)

When q = 1, equations (2.20)–(2.23) are equivalent to the original equations (2.11)–
(2.14), respectively, therefore we have

Φ(ξ1, ξ2, z; 1)= ϕ(ξ1, ξ2, z), ζ (ξ1, ξ2; 1)= η(ξ1, ξ2), Λ1(1)= σ1, Λ2(1)= σ2.

(2.25a−d)

Thus, as q increases from 0 to 1, Φ(ξ1, ξ2, z; q) deforms continuously from the initial
guess ϕ0(ξ1, ξ2, z) to the unknown potential function ϕ(ξ1, ξ2, z), so does ζ (ξ1, ξ2; q)
from 0 to the unknown wave profile η(ξ1, ξ2), Λ1(q), Λ2(q) from the initial guesses
σ1,0, σ2,0 to the unknown frequencies σ1, σ2, respectively.

Assuming that the convergence-control parameter c0 is properly chosen so that the
Maclaurin series of Φ(ξ1, ξ2, z; q), ζ (ξ1, ξ2; q), Λ1(q) and Λ2(q) with respect to the
embedding parameter q, i.e.

Φ(ξ1, ξ2, z; q)=
+∞∑
m=0

ϕm(ξ1, ξ2, z)qm, ζ (ξ1, ξ2; q)=
+∞∑
m=0

ηm(ξ1, ξ2)qm, (2.26a,b)

Λ1(q)=
+∞∑
m=0

σ1,mqm, Λ2(q)=
+∞∑
m=0

σ2,mqm (2.26c,d)

exist and converge at q= 1, we have the so-called homotopy-series solution

ϕ(ξ1, ξ2, z)=
+∞∑
m=0

ϕm(ξ1, ξ2, z), η(ξ1, ξ2)=

+∞∑
m=0

ηm(ξ1, ξ2), (2.27a,b)

σ1 =

+∞∑
m=0

σ1,m, σ2 =

+∞∑
m=0

σ2,m, (2.27c,d)

respectively.
Substituting the Maclaurin series (2.26) into the zeroth-order deformation equations

(2.20)–(2.23) and then equating the like powers of q, we obtain the so-called high-
order deformation equations

2∑
i=1

2∑
j=1

σiσj
∂2ϕm

∂ξiξj
− c2

2∑
i=1

2∑
j=1

ki · kj
∂2ϕm

∂ξiξj

− c2 ∂
2ϕm

∂z2
+ g

∂ϕm

∂z
= 0, −h 6 z 6 0, (2.28)

subject to the linear boundary condition

L∗[ϕm] = c0∆
ϕ
m−1 + χmSm−1 − S̄m, on z= 0, (2.29)
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and the bottom condition

∂ϕm

∂z
= 0, as z→−h, (2.30)

together with

ηm = c0∆
η

m−1 + χmηm−1, on z= 0, (2.31)

where χ1=0 and χm=1 for m>1. S̄m and Sm are dependent upon the chosen auxiliary
linear operator and thus will be given later. The definitions of ∆ϕ

m−1 and ∆
η

m−1 are
given in the Appendix. Note that all of the ∆ϕ

m−1, ∆η

m−1, S̄m and Sm on the right-hand
side of (2.29) and (2.31) are determined by the known previous approximations ηj and
ϕj ( j= 0, 1, 2, . . . ,m− 1), and thus can be regarded as known terms.

2.3. Small denominators of the acoustic–gravity waves
Let L denote a differential operator corresponding to the linear parts of (2.12), i.e.

L[ϕ] =ω2
1
∂2ϕ

∂ξ 2
1
+ 2ω1ω2

∂2ϕ

∂ξ1∂ξ2
+ω2

2
∂2ϕ

∂ξ 2
2
+ g

∂ϕ

∂z
, (2.32)

which has the property

L[Ψm1,m2(ξ1, ξ2), z] = λ̃m1,m2Ψm1,m2(ξ1, ξ2), (2.33)

where

λ̃m1,m2 =
g(λ2

m1,m2
− γ 2)

λm1,m2 coth(λm1,m2h)− γ
− (m1ω1 +m2ω2)

2. (2.34)

Therefore, its inverse operator L−1 is given by

L−1
[Ψm1,m2(ξ1, ξ2, z)] =

Ψm1,m2(ξ1, ξ2, z)

λ̃m1,m2

. (2.35)

Considering the gravity wave components (m1 6= m2), λ̃m1,m2 ≈ g|m1k1 + m2k2| −

(m1ω1 + m2ω2)
2. And based on (1.1), we have k1 ≈ k2 = k and ω1 ≈ ω2 =

√
gk. For

gravity wave components, when λ̃m1,m2 ≈ 0, we have

|m1 −m2| − (m1 +m2)
2
≈ 0. (2.36)

The above equation has an infinite number of integer solutions, as shown in table 1,
corresponding to an infinite number of small denominators. Thus, it is very difficult
to obtain the steady-state acoustic–gravity waves by traditional methods such as
perturbation methods. Considering the hydroacoustic wave components (m1 = m2),
when the resonance condition (1.3) is satisfied, one more zero denominator λ̃1,1 = 0
must be considered.
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(m1,m2) (m1,m2)

(1, 0) (6,−3)
(0, 1) (6,−10)
(1,−3) (10,−6)
(3,−1) (10,−15)
(3,−6) —

TABLE 1. The values of (m1,m2) corresponding to λ̃m1,m2 ≈ 0.

2.4. Choice of auxiliary linear operator
There exists an infinite number of small denominators even in the case of non-
resonance. In the framework of perturbation techniques, it is rather difficult to handle
such an infinite number of small denominators. However, different from perturbation
methods, HAM provides us great freedom to choose the auxiliary linear operator, so
that we can choose an auxiliary linear operator that is different from (2.32). Such kind
of freedom of the HAM allows us to choose an appropriate auxiliary linear operator
to avoid an infinite number of small denominators conveniently, as mentioned below.

Using the freedom of the HAM mentioned above, we choose such an auxiliary
linear operator

L∗[ϕ] =ω2
1
∂2ϕ

∂ξ 2
1
+ 2ω1ω2

∂2ϕ

∂ξ1∂ξ2
+ω2

2
∂2ϕ

∂ξ 2
2
+µg

∂ϕ

∂z
, (2.37)

where

µ=

{
1, m1 = 1,m2 = 0;m1 = 0,m2 = 1,
π/3, else,

(2.38)

which has the property

L∗[Ψm1,m2(ξ1, ξ2), z] = λ̃∗m1,m2
Ψm1,m2(ξ1, ξ2), (2.39)

where

λ̃∗m1,m2
=

µg(λ2
m1,m2
− γ 2)

λm1,m2 coth(λm1,m2h)− γ
− (m1ω1 +m2ω2)

2. (2.40)

So its inverse operator L∗−1 reads

L∗−1
[Ψm1,m2(ξ1, ξ2, z)] =

Ψm1,m2(ξ1, ξ2, z)

λ̃∗m1,m2

. (2.41)

When considering the gravity wave components (m1 6=m2) and λ̃∗m1,m2
≈ 0, we have

µ|m1 −m2| − (m1 +m2)
2
≈ 0, (2.42)

which does not have an infinite number of integer solutions. When m1 = 1, m2 = 0
and m1 = 0, m2 = 1, the auxiliary linear operators L∗ and L in (2.32) are the same,
λ̃∗1,0 = λ̃

∗

0,1 = 0. For the rest, we choose µ=π/3 as an irrational number. When m1 =
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The HAM for acoustic–gravity waves 121

m2, µ|m1 − m2| = 0, −(m1 + m2)
2
6= 0. When m1 6= m2, µ|m1 − m2| is a non-zero

irrational number but −(m1+m2)
2 is a rational number, therefore it holds that µ|m1−

m2| − (m1+m2)
2
6= 0, because the sum of a rational number and a non-zero irrational

number is always a non-zero irrational number. In this way, equation (2.42) has only
two integer solutions: m1 = 1, m2 = 0 and m1 = 0, m2 = 1. Thus, we have λ̃∗m1,m2

= 0
for only two cases even for resonance conditions:

λ̃∗1,0 = λ̃
∗

0,1 = 0. (2.43)

Until now, with the proper auxiliary linear operator, an infinite number of small
denominators are avoided once and for all automatically. It should be emphasized
that we choose two different values of µ (π/3 and

√
2) but obtain the same result.

So, without loss of generality, we choose µ=π/3 in the calculations of this paper.
Based on the auxiliary linear operator (2.37), S̄m and Sm in high-order deformation

equations are defined by

S̄m =

m−1∑
n=1

(ω2
1β

m−n,n
2,0 + 2ω1ω2β

m−n,n
1,1 +ω2

2β
m−n,n
0,2 +µgγ m−n,n

0,0 ), (2.44)

Sm =ω
2
1β

m,0
2,0 + 2ω1ω2β

m,0
1,1 +ω

2
2β

m,0
0,2 +µgγ m,0

0,0 + S̄m, (2.45)

where βn,m
i,j and γ n,m

i,j are defined by (A 19) and (A 20).

2.5. Choice of the initial guess
In case of non-resonance, using the freedom of the HAM in the choice of the initial
guess solution ϕ0, we let the initial guess ϕ0 contain two non-trivial components

ϕ0 = A
g
ω
Ψ1,0 + B

g
ω
Ψ0,1, (2.46)

where ω1 = ω2 = ω, A and B are constants, which will be chosen for different cases.
The real frequencies σ1,0 and σ2,0 are unknown.

In the case of resonating triads, λ̃1,1= 0 corresponding to the resonant hydroacoustic
wave component must be considered. Assuming that the resonant hydroacoustic wave
occupies a significant energy (compared to the non-resonance case) in the wave
system, our strategy is to add the resonant hydroacoustic wave component to the
initial guess so that the initial guess is closer to the exact solution, which will make
for rapid convergence. With the great freedom in the choice of the initial guess,
we let the initial guess ϕ0 contain two non-trivial components and one resonant
component

ϕ0 = A
g
ω
Ψ1,0 + B

g
ω
Ψ0,1 +C

g
2ω
Ψ1,1, (2.47)

where A and B are constants, which will be chosen for different cases. C is related
to A and B. It is found that, when C=min{A,B}, convergence can be obtained in all
cases in which the steady-state resonant acoustic–gravity waves exist in the present
paper.
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3. Results analysis
3.1. Non-resonant waves

For acoustic–gravity waves far from resonance, we take the same case as that
considered by Kadri & Stiassnie (2013):

k1 = (0.101937, 0) m−1, ω1 = 1.0 s−1, (3.1a)
k2 = (−0.101937, 0) m−1, ω2 = 1.0 s−1, (3.1b)

k3 = (0, 0) m−1, ω3 = 2.0 s−1, (3.1c)

where the water depth h is equal to 4000 m. Based on the perturbed equation of the
second-order interaction, Kadri & Stiassnie (2013) investigated the two primary gravity
waves and the resulting hydroacoustic wave in the whole system (without considering
an infinite number of zero denominators). For this case, from equation (8.2) of Kadri
& Stiassnie (2013) after adding more significant digits, it gives

|A(3)| = 0.20481|A(1)||A(2)|, (3.2)

where A(i) represents the wave amplitude. For the same case, we get a convergent
solution by choosing A= B= 1/10 m in the initial guess

|A(3)| = 0.20482|A(1)||A(2)|. (3.3)

There is a slight difference between (3.2) and (3.3), because Kadri & Stiassnie (2013)
considered the second-order equations of the boundary condition on the free surface
but we consider the fully nonlinear boundary condition. This illustrates the validity of
our HAM approach.

3.2. Resonant waves
The resonant triad interactions of acoustic–gravity waves exist at special water
depths h ≈ (n + 0.5)πc/ω3, as mentioned by Longuet-Higgins (1950). From
h≈ (n+ 0.5)πc/ω3, we have

ω3 ≈ (n+ 0.5)πc/h. (3.4)

Substituting c = 1500 m s−1 and h = 4000 m into the above algebraic equation, we
have

ω3 ≈ 1.17810(n+ 0.5). (3.5)

When n= 0, 1, 2, 3, . . ., ω3≈ 0.589049 s−1, 1.76715 s−1, 2.94529 s−1, 4.12334 s−1, . . .,
respectively. Actually, we can get the convergent solution of the steady-state acoustic–
gravity waves for the cases of mode n= 1 and mode n= 2, but not for the cases of
mode n= 0 and mode n= 3. This illustrates that steady-state resonant acoustic–gravity
waves do not exist in all cases, as Xu et al. (2012) mentioned for general steady-state
resonant gravity waves. We obtain the cases of exact resonating triads in a way similar
to that of Kadri & Stiassnie (2013).
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i σ1,0 (s−1) σ2,0 (s−1)

Group 1 −0.883375 −0.880457
Group 2 −0.883375 0.887434
Group 3 0.884491 −0.880457
Group 4 0.884491 0.887434

TABLE 2. The solution of (3.8) in the case of h= 4000 m, k1 = k2 = 0.0796449 m−1,
A= 1/20 m, B= 1/50 m, C= 1/50 m.

3.2.1. Resonant waves for the case with |k3| = 0 (mode n= 1)
For the resonant waves, we consider first the case of Longuet-Higgins with |k3| = 0

and present detailed results for mode n= 1 near the non-resonance case we considered
in § 3.1, say, ω3 = 1.76784 s−1. So, we investigate here the following resonant
acoustic–gravity wave system:

k1 = (0.0796449, 0) m−1, ω1 = 0.883921 s−1, (3.6a)
k2 = (−0.0796449, 0) m−1, ω2 = 0.883921 s−1, (3.6b)

k3 = (0, 0) m−1, ω3 = 1.76784 s−1. (3.6c)

In this case, we choose A= 1/20 m, B= 1/50 m and C=min{A,B} = 1/50 m in the
initial guess (2.47).

Substituting this initial guess into the so-called first-order deformation equation
(2.29) (m= 1) in the framework of HAM, we have

L∗[ϕ1] = c0∆
ϕ
0 − S̄1

= b1,0 sin(ξ1)+ b0,1 sin(ξ2)+ b2,0 sin(2ξ1)+ b0,2 sin(2ξ2)

+ b1,1 sin(ξ1 + ξ2)+ b1,−1 sin(ξ1 − ξ2)+ b2,1 sin(2ξ1 + ξ2)+ b1,2 sin(ξ1 + 2ξ2)

+ b3,1 sin(3ξ1 + ξ2)+ b2,2 sin(2ξ1 + 2ξ2)+ b1,3 sin(ξ1 + 3ξ2)

+ b3,2 sin(3ξ1 + 2ξ2)+ b2,3 sin(2ξ1 + 3ξ2)+ b3,3 sin(3ξ1 + 3ξ2), (3.7)

where bm1,m2 depends upon σ1,0, σ2,0, which is unknown in the initial guess (2.47).
Owing to the property of the inverse linear operator (2.41), the coefficients of the
terms sin(ξ1) and sin(ξ2) on the right-hand side of the first-order deformation equation
(2.29) (m= 1) must be zero so as to avoid secular terms. This provides two coupled
nonlinear algebraic equations for σ1,0, σ2,0

0.433575+ 0.000619520σ1,0 − 0.554914σ 2
1,0 = 0, (3.8a)

0.173432+ 0.000154880σ2,0 − 0.221965σ 2
2,0 = 0, (3.8b)

whose solutions are shown in table 2. Since σ1,0, σ2,0 must be positive, only group 4
has physical meaning. As long as σ1,0, σ2,0 are determined, ϕ0 is known. And, with
the initial guess η0 = 0, it is straightforward to calculate η1 directly. We have

η1 = c0∆
η

0

= a1,0 cos(ξ1)+ a0,1 cos(ξ2)+ a1,1 cos(ξ1 + ξ2)

+ a2,1 cos(2ξ1 + ξ2)+ a1,2 cos(ξ1 + 2ξ2), (3.9)

where am1,m2 are known constants.
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Now, all terms on the right-hand side of the first-order deformation equation (2.29)
(m= 1) are known, so it is straightforward to obtain ϕ1:

ϕ1 =L∗−1
[c0∆

ϕ
0 − S̄1] + A∗Ψ1,0 + B∗Ψ0,1. (3.10)

Since the components A(ω/g)Ψ1,0 and B(ω/g)Ψ0,1 of the two primary waves are given,
we have A∗ = B∗ = 0 so that

ϕ1 = L∗−1
[c0∆

ϕ
0 − S̄1]

= d1,0Ψ1,0 + d0,1Ψ0,1 + d2,0Ψ2,0 + d0,2Ψ0,2 + d1,1Ψ1,1 + d1,−1Ψ1,−1 + d2,1Ψ2,1

+ d1,2Ψ1,2 + d3,1Ψ3,1 + d2,2Ψ2,2 + d1,3Ψ1,3 + d3,2Ψ3,2 + d2,3Ψ2,3 + d3,3Ψ3,3, (3.11)

where dm1,m2 = bm1,m2/λ̃
∗

m1,m2
. We substitute ϕ1 into the second-order deformation

equation (2.29) (m = 2). Note that coefficients of sin(m1ξ1 + m2ξ2) contain σ1,1 and
σ2,1 that are unknown right now. Then, enforcing the coefficients of sin(ξ1) and
sin(ξ2) on its right-hand side to be zero so as to avoid secular terms, we can further
determine σ1,1 and σ2,1 in a similar way. Then, we can similarly obtain η2, ϕ2, and
so on.

In addition, the ‘convergence-control parameter’ c0 can provide a convenient way
to guarantee the convergence of the solution series in the framework of HAM. The
optimal value of c0 is determined through the minimum residuals of (2.12) and
(2.13) to guarantee the convergence of the HAM approximations. Define the averaged
residual square as

εφm =
1
π2

∫ π

0

∫ π

0

(
m∑

n=0

∆φ
n

)2

dξ1 dξ2, (3.12)

εηm =
1
π2

∫ π

0

∫ π

0

(
m∑

n=0

∆η
n

)2

dξ1 dξ2, (3.13)

for the mth-order approximation of φ and η. The residual errors of εφm and εηm both
decrease sharply when the value of c0 is close to −1.35, as shown in figure 1. Then,
we choose c0=−1.35. The corresponding residual error squares of the two boundary
conditions decease rather quickly to the level 10−16 at 20th order, as shown in table 3
and figure 2. Then, we can obtain the convergent wave frequencies and amplitudes,
which are given in table 4. The a∗1,1 represents the amplitude corresponding to
the resonant hydroacoustic wave component. If we neglect the g(∂ϕ/∂z) term in
(2.1), we can also get the convergent series solutions of the steady-state resonant
acoustic–gravity waves, as shown in table 5. It is found that the gravity contribution in
(2.1) is very small. The existence of g(∂ϕ/∂z) has negligible effect on the calculation
results of this paper. Actually, one can omit the gravity contribution in (2.1) for
practical purposes. This conclusion was also confirmed by Abdolali & Kirby (2017),
who showed the negligible role of g(∂ϕ/∂z) on hydroacoustic waves and surface
gravity waves with short wavelength. Furthermore, we investigate different cases in a
similar way, as shown in table 6.

Define

Π =

+∞∑
m1=0

+∞∑
m2=−∞

(am1,m2)
2. (3.14)
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FIGURE 1. (Colour online) Averaged residual squares versus c0 in the case of h=4000 m,
k1 = k2 = 0.0796449 m−1, A = 1/20 m, B = 1/50 m, C = 1/50 m. Solid line: first-order
approximation; dashed line: third-order approximation; dash-dot-dotted line: fifth-order
approximation; dotted line: seventh-order approximation. Panel (a) represents averaged
residual square of log10ε

φ
m versus c0 and (b) represents averaged residual square of log10ε

η
m

versus c0.

m (order of approximation) εφm εηm

1 0.00002130 0.00164865
5 5.70× 10−7 4.86× 10−7

10 5.84× 10−10 1.13× 10−10

15 7.94× 10−13 1.13× 10−13

20 9.76× 10−16 1.47× 10−16

TABLE 3. The averaged residual squares of εφm and εηm in the case of h= 4000 m, k1 =

k2 = 0.0796449 m−1, A= 1/20 m, B= 1/50 m, C= 1/50 m by means of c0 =−1.35.

m ε1 ε2 a1,0 a0,1 a∗1,1
1 1.000645 1.003974 0.0675009 0.0270007 0.0267706
5 0.999196 0.994859 0.0502925 0.0201725 0.0263204
10 0.999170 0.994775 0.0500194 0.0200514 0.0261579
15 0.999171 0.994776 0.0500211 0.0200522 0.0261548
18 0.999171 0.994776 0.0500210 0.0200522 0.0261547
20 0.999171 0.994777 0.0500210 0.0200522 0.0261546
21 0.999171 0.994777 0.0500210 0.0200522 0.0261546

TABLE 4. Analytical approximations of the dimensional angular frequencies and wave
amplitude components (m) in the case of k1 = k2 = 0.0796449 m−1, A = 1/20 m, B =
1/50 m, C= 1/50 m.

The wave amplitudes and energy distributions of the two primary waves and resonant
hydroacoustic wave component are given in table 7. It is found that the two primary
gravity waves and the resonant hydroacoustic wave as a whole occupy most wave
energy in all considered cases. A similar conclusion was found for steady-state

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

42
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

ha
ng

ha
i J

ia
oT

on
g 

U
ni

ve
rs

ity
, o

n 
19

 Ju
n 

20
18

 a
t 0

8:
16

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.422
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


126 X. Yang, F. Dias and S. Liao

10–2

10–4

10–6

10–8

10–10

10–12

10–14

10–16

10–18
5 10 15 20

FIGURE 2. (Colour online) Averaged residual squares of εφm and εηm versus the
approximation order m by means of c0 = −1.35 in the case of h = 4000 m, k1 = k2 =

0.0796449 m−1, A= 1/20 m, B= 1/50 m, C= 1/50 m.
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FIGURE 3. (Colour online) Time variation of dynamic pressure (pd) induced by the
resulting hydroacoustic wave in the case k1 = k2 = 0.0796449 m−1, A = 1/20 m, B =
1/50 m, C= 1/50 m.

exactly/nearly resonant gravity waves by Liao (2011b), Xu et al. (2012), Liu & Liao
(2014), Liu et al. (2015) and Liao et al. (2016).

Next, we discuss the pressure distribution of the steady-state resonant acoustic–
gravity waves. We consider here the dynamic pressure pd of the resulting hydroacoustic
wave in the whole fluid. Figure 3 shows the time variation of dynamic pressure (pd)
induced by the hydroacoustic wave in the case k1= k2= 0.0796449 m−1, A= 1/20 m,
B = 1/50 m. It is found that, when the resonance condition is exactly satisfied,
acoustic–gravity waves can also generate a periodic pressure on the ocean floor,
whose frequency is the superposition of the actual wave frequencies of the two
primary waves. If the amplitudes of the two primary waves are the same (the cases
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ε1 ε2 a1,0 a0,1 a∗1,1

With g
∂ϕ

∂z
0.999171 0.994777 0.0500210 0.0200522 0.0261546

Without g
∂ϕ

∂z
0.999171 0.994773 0.0500211 0.0200522 0.0261541

TABLE 5. The dimensionless angular frequencies and the wave amplitude components (m)
in the case with |k3| = 0 (mode n= 1), A= 1/20 m and B= 1/50 m with or without the
g(∂ϕ/∂z) term in (2.1).

A B ε1 ε2 a1,0 a0,1 a∗1,1
1/10 1/10 0.992044 0.992044 0.1004001 0.1004001 0.0993025
1/20 1/20 0.996020 0.996020 0.0500998 0.0500998 0.0498267
1/20 1/25 0.997190 0.995603 0.0500706 0.0400881 0.0440260
1/20 1/50 0.999171 0.994777 0.0500210 0.0200522 0.0261546
1/20 1/100 0.999787 0.994487 0.0500056 0.0100275 0.0138027

TABLE 6. The dimensionless angular frequencies and the wave amplitude components
(m) versus A (m) and B (m) in the case of k1 = k2 = 0.0796449 m−1.

A B a2
1,0/Π (%) a2

0,1/Π (%) a∗21,1/Π (%)

1/10 1/10 33.57 33.57 32.84
1/20 1/20 33.45 33.45 33.09
1/20 1/25 41.42 26.55 32.02
1/20 1/50 69.73 11.21 19.06
1/20 1/100 89.57 3.60 6.82

TABLE 7. The energy distribution of the wave system versus A (m) and B (m) in the
case of k1 = k2 = 0.0796449 m−1.

corresponding to A = B in the initial guess ϕ0), the actual wave frequencies of the
two primary waves are the same. So, the frequency of the pressure at the sea bottom
is exactly twice the wave frequency of the primary gravity waves. The pressure
generated by the acoustic–gravity waves is dependent of the water depth, as shown in
figure 3. The magnitude of pressure is related to the amplitude of the hydroacoustic
wave, which is determined by the value of A and B in the initial guess of the velocity
potential ϕ0. In the present case, the maximum dynamic pressure on the bottom is
approximately 70 kPa, which is much larger than the pressure (≈3.5 Pa) obtained
in the above-mentioned case of non-resonance with the same amplitude A= 1/20 m
and B = 1/50 m of the velocity potential ϕ0. This value is of the same order of
magnitude as the maximum dynamic pressure of the first acoustic–gravity wave mode
generated by bottom motion in the study of Oliveira & Kadri (2016). So, the resonant
acoustic–gravity waves might indeed trigger microseisms in the Earth.

Without considering the compressibility of the water, Pellet et al. (2017) obtained a
second-order pressure field generated by two exactly opposite travelling gravity waves
(k1 + k2 = 0), which is independent of water depth and periodic in time with twice
the frequency of the primary gravity waves. It reads

p2 = 8ρω2
1a1,0a0,1 cos(2ω1t). (3.15)
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FIGURE 4. (Colour online) The second-order pressure induced by two opposite primary
waves in the case of ω1 = 0.884266 s−1, a1,0 = 0.0500210 m, a0,1 = 0.0200522 m.

We choose the same amplitudes of the two primary waves as these in the resonance
case (3.6). a1,0= 0.0500210 m, a0,1= 0.0200522 m. Then we can get the second-order
pressure field, as shown in figure 4. The second-order pressure is proportional to the
amplitudes of the two primary waves. It is found that when the acoustic–gravity waves
resonance occurs, the maximum dynamic pressure on the bottom is approximately
70 kPa (with compressibility), which is much larger than the second-order pressure
(≈6 Pa) (without compressibility) obtained with the same amplitudes of the two
primary waves. The reason is that no resonance occurs in the whole system, when
we ignore the compressibility of water.

3.2.2. Resonant waves for the case with |k3| = 0 (mode n= 2)
Here, we investigate the following resonant acoustic–gravity wave system

(mode n= 2):

k1 = (0.221124, 0) m−1, ω1 = 1.47283 s−1, (3.16a)
k2 = (−0.221124, 0) m−1, ω2 = 1.47283 s−1, (3.16b)

k3 = (0, 0) m−1, ω3 = 2.94566 s−1. (3.16c)

In this case, we choose A = 1/50 m and different values of B in the initial guess
(2.47). The dimensionless angular frequencies and the wave amplitude components
in different conditions are shown in table 8. Similarly to the results of case (3.6),
it is found that the two primary gravity waves and the resonant hydroacoustic wave
as a whole occupy most wave energy in all considered cases, as shown in table 9.
The dynamic pressure pd of the resulting hydroacoustic wave in the whole fluid
in the case of A = 1/50 m and B = 1/100 m is shown in figure 5. The maximum
dynamic pressure on the bottom is approximately 55 kPa, which might indeed trigger
microseisms of the ocean floor.

3.2.3. Resonant waves for the case with 0< |k3|<ω3/c
The resonance case (mode n= 1) given by Kadri & Stiassnie (2013) is

k1 = (0.102249, 0) m−1, ω1 = 1.00153 s−1, (3.17a)
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FIGURE 5. (Colour online) Time variation of dynamic pressure (pd) induced by the
resulting hydroacoustic wave in the case k1 = k2 = 0.221124 m−1, A = 1/50 m, B =
1/100 m.

B ε1 ε2 a1,0 a0,1 a∗1,1
1/50 0.995880 0.995880 0.0200443 0.0200443 0.0199223
1/100 0.998610 0.994410 0.0200141 0.0100279 0.0125962
1/150 0.999350 0.994075 0.0200067 0.0066864 0.0089018

TABLE 8. The dimensionless angular frequencies and the wave amplitude components
(m) versus B (m) in the case of k1 = k2 = 0.221124 m−1, A= 1/50 m.

B a2
1,0/Π (%) a2

0,1/Π (%) a∗21,1/Π (%)

1/50 33.47 33.47 33.06
1/100 60.71 15.24 24.05
1/150 76.35 8.53 15.12

TABLE 9. The energy distribution of the wave system versus B (m) in the case of
k1 = k2 = 0.221124 m−1, A= 1/50 m.

k2 = (−0.101625, 0) m−1, ω2 = 0.99847 s−1, (3.17b)
k3 = (0.000642, 0) m−1, ω3 = 2.00000 s−1. (3.17c)

For studying this resonance case, we choose A= 1/20 m and different values of B in
the initial guess (2.47). We can obtain the convergent wave frequencies and amplitudes
through the same calculation process as in § 3.2.1, as shown in table 10. The energy
distributions of the wave system are shown in table 11. It is found that the convergent
solutions of the resonance steady-state acoustic–gravity triads for general resonance
case with 0< |k3|<ω3/c can even be obtained. This illustrates the generality of the
existence of the steady-state resonant acoustic–gravity waves. And the two primary
gravity waves along with the resonant hydroacoustic wave as a whole occupy most
wave energy in the wave system like (3.6) and (3.16) with |k3| = 0.
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B ε1 ε2 a1,0 a0,1 a∗1,1
1/20 0.994907 0.994906 0.0501282 0.0501274 0.0497762
1/25 0.996404 0.994372 0.0500907 0.0401124 0.0439924
1/50 0.998941 0.993313 0.0500271 0.0200666 0.0261387
1/100 0.999730 0.992943 0.0500073 0.0100351 0.0137940

TABLE 10. The dimensionless angular frequencies and the wave amplitude components
(m) versus B (m) in the case of k1 = 0.102249 m−1, k2 = 0.101625 m−1, A= 1/20 m.

B a2
1,0/Π (%) a2

0,1/Π (%) a∗21,1/Π (%)

1/20 33.49 33.49 33.02
1/25 41.45 26.58 31.97
1/50 69.74 11.22 19.04
1/100 89.58 3.61 6.81

TABLE 11. The energy distribution of the wave system versus B (m) in the case of
k1 = 0.102249 m−1, k2 = 0.101625 m−1, A= 1/20 m.

Even in the cases of h= 2000 m and h= 3000 m, we also obtain the steady-state
resonant acoustic–gravity waves. It means that steady-state resonant acoustic–gravity
waves commonly exist in water of uniform depth. This agrees with Kadri & Stiassnie
(2013), who pointed out that the water depth h should be greater than hcr ≡ πc/2ω3
for the existence of a hydroacoustic wave.

4. Concluding remarks and discussion
The steady-state acoustic–gravity waves are studied under non-resonance and exact

resonance conditions. In the framework of traditional methods, like the perturbation
methods, there exist an infinite number of small denominators. However, in the
framework of HAM, these infinite number of small denominators can be avoided
conveniently by means of choosing a piecewise auxiliary linear operator. Besides,
the so-called convergence-control parameter provides a simple way to guarantee the
convergence of solution series. Considering the works of Liao (2011b), Xu et al.
(2012), Liu & Liao (2014), Liu et al. (2015), Liao et al. (2016) and Liu et al.
(2018), the steady-state waves with time-independent wave spectrum commonly exist
not only for gravity waves in various depths of water but also for acoustic–gravity
waves in deep water of uniform depth.

In the considered case without resonance, the solutions given by our HAM approach
agree well with those obtained by Kadri & Stiassnie (2013). This illustrates the
validity of our HAM approach. In the considered cases with resonance, steady-state
resonant acoustic–gravity waves have been obtained for the first time, to the best of
our knowledge. Like the steady-state resonant gravity waves (Xu et al. 2012; Liu &
Liao 2014; Liu et al. 2015; Liao et al. 2016), the two primary gravity waves and the
resonant acoustic–gravity occupy most of wave energy. This illustrates the common
existence of the steady-state resonant waves.

When dealing with the pressure field caused by the hydroacoustic waves, most of
researchers considered the non-resonant acoustic–gravity waves and the hydroacoustic
waves generated by the vertical oscillations of ocean floor. For the resonance state,
no specific analysis of the pressure field was given. In this paper, we obtained the
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steady-state acoustic–gravity waves under the exact resonance criterion. So, it is easy
for us to get the pressure field caused by the steady-state resonant hydroacoustic wave
component. It is found that the resonant acoustic–gravity waves can indeed generate
a pressure on the ocean floor, the frequency of which is the superposition of the
actual wave frequencies of the two primary waves. The maximum dynamic pressure
on the bottom is much larger than the pressure in the case of non-resonance and
the second-order pressure without considering the compressibility of the water, which
might trigger microseisms in the Earth.

In addition, we also successfully obtained the steady-state resonant acoustic–gravity
waves in some cases with different water depths, such as h= 3000 m and h= 2000 m.
This indicates that the steady-state resonant acoustic–gravity waves commonly exist
in deep water of uniform depth. The steady-state resonant acoustic–gravity waves
obtained in this paper are helpful to enrich our understanding about resonant
acoustic–gravity waves.
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Appendix A. Definitions of ∆ϕm and ∆
η
m in (2.29) and (2.31)

The definitions of ∆ϕ
m and ∆η

m in (2.29) and (2.31) are given by

∆ϕ
m =Om + gϕ̄0,0

z,m − 2Hm +Λm, (A 1)

∆η
m = ηm −

1
g
Υm, (A 2)

where

Om =

m∑
n=0

(Kn,1ϕ̄
2,0
m−n + 2Kn,3ϕ̄

1,1
m−n +Kn,2ϕ̄

0,2
m−n), (A 3)

Hm =

m∑
n=0

(σ1,nΓm−n,1 + σ2,nΓm−n,2), (A 4)

Λm =

m∑
n=0

(k2
1ϕ̄

1,0
n Γm−n,1 + k2

2ϕ̄
0,1
n Γm−n,2 + ϕ̄

0,0
z,nΓm−n,3)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n Γm−n,2 + ϕ̄

0,1
n Γm−n,1), (A 5)

Υm =

m∑
n=0

(σ1,nϕ̄
1,0
m−n + σ2,nϕ̄

0,1
m−n)− Γm,0, (A 6)
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with the definitions

Kn,1 =

n∑
m=0

σ1,mσ1,n−m, (A 7)

Kn,2 =

n∑
m=0

σ2,mσ2,n−m, (A 8)

Kn,3 =

n∑
m=0

σ1,mσ2,n−m, (A 9)

Γm,0 =
k2

1

2

m∑
n=0

ϕ̄1,0
n ϕ̄1,0

m−n + k1 · k2

m∑
n=0

ϕ̄1,0
n ϕ̄0,1

m−n +
k2

2

2

m∑
n=0

ϕ̄0,1
n ϕ̄0,1

m−n

+
1
2

m∑
n=0

ϕ̄0,0
z,n ϕ̄

0,0
z,m−n, (A 10)

Γm,1 =

m∑
n=0

(k2
1ϕ̄

1,0
n ϕ̄2,0

m−n + k2
2ϕ̄

0,1
n ϕ̄1,1

m−n + ϕ̄
0,0
z,n ϕ̄

1,0
z,m−n)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n ϕ̄1,1

m−n + ϕ̄
2,0
n ϕ̄0,1

m−n), (A 11)

Γm,2 =

m∑
n=0

(k2
1ϕ̄

1,0
n ϕ̄1,1

m−n + k2
2ϕ̄

0,1
n ϕ̄0,2

m−n + ϕ̄
0,0
z,n ϕ̄

0,1
z,m−n)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n ϕ̄0,2

m−n + ϕ̄
0,1
n ϕ̄1,1

m−n), (A 12)

Γm,3 =

m∑
n=0

(k2
1ϕ̄

1,0
n ϕ̄1,0

z,m−n + k2
2ϕ̄

0,1
n ϕ̄0,1

z,m−n + ϕ̄
0,0
z,n ϕ̄

0,0
zz,m−n)

+ k1 · k2

m∑
n=0

(ϕ̄1,0
n ϕ̄0,1

z,m−n + ϕ̄
0,1
n ϕ̄1,0

z,m−n). (A 13)

The expressions for ϕ̄i,j
n , ϕ̄i,j

z,n and ϕ̄i,j
zz,n are

ϕ̄i,j
n =

n∑
m=0

βn−m,m
i,j , (A 14)

ϕ̄i,j
z,n =

n∑
m=0

γ n−m,m
i,j , (A 15)

ϕ̄i,j
zz,n =

n∑
m=0

δn−m,m
i,j , (A 16)

with the definitions

µm,n =


ηn, m= 1, n > 1,

n−1∑
i=m−1

µm−1,iηn−i, m > 2, n > m,
(A 17)
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ψn,m
i,j =

∂ i+j

∂ξ1
i∂ξ2

j

(
1
m!

∂ϕn

∂zm

∣∣∣∣
z=0

)
, (A 18)

βn,m
i,j =


ψ

n,0
i,j , m= 0,

m∑
s=1

ψn,s
i,j µs,m, m > 1,

(A 19)

γ n,m
i,j =


ψ

n,1
i,j , m= 0,

m∑
s=1

(s+ 1)ψn,s+1
i,j µs,m, m > 1,

(A 20)

δn,m
i,j =


2ψn,2

i,j , m= 0,
m∑

s=1

(s+ 1)(s+ 2)ψn,s+2
i,j µs,m, m > 1. (A 21)

A detailed derivation can be found in the appendix in Liao (2011b).
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