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Unsteady flow of a viscous incompressible electrically conducting non-Newtonian power-
law fluid near the forward stagnation point of a two-dimensional body in the presence
of a magnetic field is studied by means of an analytic technique, namely, the homotopy
analysis method. Accurate analytic approximations are obtained, which are uniformly
valid for all dimensionless time in the whole region 0 ≤ η < ∞. Effects of integral power-
law index of the non-Newtonian fluids for κ = 1, 2, 3 and magnetic number M ≤ 10
on the flow are considered. To the best of authors’ knowledge, such kinds of analytic
solutions have been never reported.

Introduction. Non-Newtonian fluids are very important fluids, which are
widely used in industry. Most particulate slurries (china clay and coal in water,
sewage sludge, etc.), multiphase mixtures (oil-water emulsions, gas-liquid disper-
sions, such as froths and foams, butter) are non-Newtonian fluids. Further exam-
ples, including a variety of non-Newtonian characteristics, include pharmaceutical
formulations, cosmetics and toiletries, paints, synthetic lubricants, biological fluids
(blood, synovial fluid, saliva), and foodstuffs (jams, jellies, soups, marmalades).
Indeed, behaviours of the non-Newtonian fluids are so widespread that it would
be no exaggeration to say that the Newtonian fluid behaviours are an exception
rather than the rule. Since the non-Newtonian fluids have more complicated equa-
tions that relate the shear stresses to the velocity field than the Newtonian fluids
have, additional factors must be considered in examining various fluid mechanics
(see, Irvine and Karni [1]).

Several models have been proposed to describe the non-Newtonian behaviour
of fluids. Among these models, which are known to follow the empirical Ostwaald-
de Waele model, the so-called power-law model, in which the shear stress varies
according to a power function of the strain rate, has received wide acceptance.
Boundary layer assumptions were successfully applied to this model and much
work has been done on it. Schowalter [2] and Acrivos et al. [3] initially theoretically
analyzed the steady boundary layer flow of incompressible non-Newtonian power-
law fluids and found the existence of the similarity solutions. Kim et al. [4] made
a detailed analysis to obtain possible similarity solutions of the steady boundary
layer equations of a non-Newtonian fluid. Yükselen and Erim [5] considered the
curvature effects on the boundary layer of a non-Newtonian fluid. Thompson and
Snyder [6], and Kim and Eraslan [7] investigated the effect of wall mass injection
on the flow of a non-Newtonian power-law fluid over a flat plate, near a stagnation
point and past a wedge. Akçay and Yükselen [8] analyzed the boundary layer
of a non-Newtonian fluid flow with fluid injection on a semi-infinite flat plate,
which moves with a constant velocity in the direction opposite to that of the
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uniform mainstream. All these kinds of problems have been studied theoretically,
numerically and experimentally, by many researchers such as Djukic [9], Helmy
[10–12], Ariel [13]. Several excellent books and review papers, summarizing the
state-of-the-art available in the literature, testify to the maturity of the field of
non-Newtonian fluids, e.g., Astarita and Marrucci [14], Darby [15], Schowalter
[16], Tanner [17], Bird et al. [18], Crochet et al. [19], Andersson and Irgens [20],
Shenoy and Mashelkar [21], and Ghosh et al. [22].

Most of the previous theoretical and experimental studies of the non-Newtonian
fluids have considered steady-state boundary layer flow problems, but little work
has been done on unsteady boundary layer flows of the non-Newtonian fluids. Xu
and Liao [23] investigated the unsteady magnetohydrodynamic viscous flows of
non-Newtonian fluids caused by an impulsively stretching plate. Xu, Liao and
Pop [24] considered the unsteady flow of a non-Newtonian power-law fluid in the
forward stagnation region of a body and obtained accurate analytic solutions by
applying the homotopy analysis method.

The objective of this paper is to study analytically the problem of unsteady
flow of a viscous incompressible electrically conducting non-Newtonian power-law
fluid near the forward stagnation region of a two-dimensional body subject to a
magnetic field by the homotopy analysis method [26–29]. To the best of authors’
knowledge, no one has ever reported such kind of analytic solutions, which are
valid for all time 0 ≤ τ <∞ in the whole region 0 ≤ η <∞.

1. Mathematical description. Consider an unsteady flow of a vis-
cous incompressible electrically conducting non- Newtonian power-law fluid in the
vicinity of the forward stagnation of a two-dimensional body subject to a constant
magnetic field. The magnetic field is applied normal to the surface of the body
and fixed relative to the fluid. It is assumed that the magnetic Reynolds number
Re = µ0σV L � 1, where µ0 is the magnetic permeability, σ is the electric con-
ductivity and V and L are the characteristic velocity and length, respectively. It
is also assumed that when t < 0, the surface of the body and the fluid are at rest.
Then, at time t = 0, the external stream is set into an impulsive motion from rest
with a velocity ue(x) = ax, where x is the Cartesian coordinate measured along
the surface of the body started from the stagnation point and a > 0 is a constant.
Under these conditions the governing equations for the unsteady boundary layer
flows are

∂u

∂x
+
∂v

∂y
= 0 , (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

due

dx
+
K

ρ

∂

∂y

(∂u
∂y

)κ

− σB2
0

ρ

(
u− ue

)
, (2)

where y is the Cartesian coordinate measured normal to the surface of the body, u
and v are the velocity components along the x- and y-axes, K, ρ, σ and B0 are the
viscosity, density, electric conductivity and magnetic field, respectively. κ is the
index in the power-law variation of the shear stress of a non-Newtonian fluid with
κ < 1 for the pseudoplastic fluid, κ > 1 for the dilatant fluid and κ = 1 for the
Newtonian fluid, respectively. The corresponding initial and boundary conditions
are

t < 0 : u = v = 0, for all points (x, y) , (3a)
t ≥ 0 : u = v = 0, on y = 0, x ≥ 0 , (3b)
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t ≥ 0 : u = ue(x) = ax, as y → ∞ . (3c)

Let ψ denote the stream function. Following Williams and Rhyne [30], Nazar et al.
[31], Liao [32] and Xu and Liao [23], we use the following similarity transformations

ψ = (ρa1−2κ/K)−1/(κ+1)x2κ/(κ+1)ξ1/(κ+1)f(η, ξ) ,

η = (ρa2−κ/K)−1/(κ+1)x(1−κ)/(κ+1)ξ−1/(κ+1)y ,

ξ = 1 − exp(−τ), τ = at .

(4)

Then, the partial differential equations (1)–(2) are reduced to one partial differ-
ential equation.

(1 − ξ)
(

1
κ+ 1

η
∂2f

∂η2
− ξ

∂2f

∂η∂ξ

)
+ κ

(
∂2f

∂η2

)κ−1
∂3f

∂η3
+

+ ξ

[
2κ
κ+ 1

f
∂2f

∂η2
+ 1 −

(∂f
∂η

)2

+M
(
1 − ∂f

∂η

)]
= 0 , (5)

subject to the boundary conditions

f(0, ξ) = 0,
∂f(η, ξ)
∂η

∣∣∣∣
η=0

= 0,
∂f(η, ξ)
∂η

∣∣∣∣
η=0

= 1 . (6)

At ξ = 0, corresponding to τ = 0, Eq. (5) reduces to

1
κ+ 1

η
∂2f

∂η2
+ κ

(∂2f

∂η2

)κ−1 ∂3f

∂η3
= 0 , (7)

subject to the boundary conditions

f(0, 0) =
∂f(η, ξ)
∂η

∣∣∣∣
η=0, ξ=0

= 0,
∂f(η, ξ)
∂η

∣∣∣∣
η=∞, ξ=0

= 1 . (8)

At ξ = 1, corresponding to τ = ∞ for steady-state flows, Eq. (5) reduces to

κ
(∂2f

∂η2

)κ−1 ∂3f

∂η3
+

2κ
κ+ 1

f
∂2f

∂η2
+ 1 −

(∂f
∂η

)2

+M
(
1 − ∂f

∂η

)
= 0 , (9)

subject to the boundary conditions

f(0, 1) =
∂f(η, ξ)
∂η

∣∣∣∣
η=0, ξ=1

= 0,
∂f(η, ξ)
∂η

∣∣∣∣
η=∞, ξ=1

= 1 , (10)

where M = σB2/(ρa) is the magnetic parameter.
Note that different from the corresponding unsteady flow of the Newtonian

fluid, even the equation at ξ = 0 is nonlinear for the non-Newtonian fluid. Thus,
the nonlinearity under consideration is rather strong.

The quantity with physical interest is the local skin friction coefficient, Cf ,
defined by

Cf(Rex)1/(κ+1) = 2ξ−1κ/(κ+1)

[
∂2f

∂η2
(ξ, 0)

]κ

, (11)

where Rex = ρx(ue)2−κ/K is the local Reynolds number.
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2. Homotopy analysis solution. In this section, we solve Eq. (5) ana-
lytically by the homotopy analysis method. From the boundary condition (6) it is
obvious that f(η, ξ) can be expressed by a set of base functions{

ξjηκ exp(−nη) | j ≥ 0, k ≥ 0, n ≥ 0
}

(12)

in the form

f(η, ξ) =
+∞∑
j=0

+∞∑
k=0

+∞∑
n=0

aj
k,nξ

jηk exp(−nη) , (13)

where aj
k,n is the coefficient to be determined. Thus, all approximations of f(η, ξ)

must obey the above expressions: this is so important in the frame of the homotopy
analysis method that they should be taken as a rule called the Rule of Solution
Expression for f(η, ξ). From the boundary conditions (6), and considering the
Rule of Solution Expression denoted by (13), it is straightforward to choose

f0(η, ξ) = η + exp(−η) − 1 , (14)

as an initial approximation of f(η, ξ). Similarly, it is natural to choose

Lf

[
Φ(ξ, η; q)

]
= exp(η)

[
∂3Φ
∂η3

− ∂Φ
∂η

]
(15)

as an auxiliary linear operator, which has the following property

Lf

[
C1 exp(−η) + C2 exp(η) + C3

]
= 0 , (16)

where C1, C2 and C3 are the constants. From (5), we define a nonlinear operator

Nf

[
Φ(ξ, η; q)

]
= (1 − ξ)

(
1

κ+ 1
η
∂2Φ
∂η2

− ξ
∂2Φ
∂η∂ξ

)
+ κ

(
∂2Φ
∂η2

)κ−1
∂3Φ
∂η3

+

+ ξ

[
2κ
κ+ 1

Φ
∂2Φ
∂η2

+ 1 −
(∂Φ
∂η

)2

+M
(
1 − ∂Φ

∂η

)]
,

(17)

where q is an embedding parameter, Φ(ξ, η; q) denotes mappings of f(η, ξ). Let
�f denote the auxiliary non-zero parameter. We construct the so-called zero-order
deformation equation

(1 − q)Lf

[
Φ(ξ, η; q) − f0(η, ξ)

]
= q�fNf

[
Φ(ξ, η; q)

]
, (18)

subject to the boundary conditions

Φ(0, ξ; q) =
∂Φ(η, ξ; q)

∂η

∣∣∣∣
η=0

= 0,
∂Φ(η, ξ; q)

∂η

∣∣∣∣
η=+∞

= 1 . (19)

Obviously, when q = 0 and q = 1, the above zero-order deformation equation (18)
has the solutions

Φ(η, ξ; 0) = f0(η, ξ) (20a)

and

Φ(η, ξ; 1) = f(η, ξ) , (20b)
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respectively. Thus, as q increases from 0 to 1, Φ(η, ξ; q) varies (or deforms) from the
known initial guess f0(η, ξ) to the unknown solution f(η, ξ). Expending Φ(η, ξ; q)
in Taylors series with respect to q, we have

Φ(η, ξ; q) = Φ(η, ξ, 0) +
+∞∑
m=1

fm(η, ξ)qm , (21)

where

fm(η, ξ) =
1
m!

∂mΦ(η, ξ; q)
∂qm

∣∣∣∣
q=0

. (22)

Note that Eq. (18) contain the auxiliary parameter �f . Assuming that �f is
correctly chosen so that the above series is convergent at q = 1, we have, using
(20b), a solution series

f(η, ξ) = f0(η, ξ) +
+∞∑
m=1

fm(η, ξ) (23)

For simplicity, define
fm =

{
f0, f1, f2 . . . , fm

}
(24)

Differentiating the zero-order deformation equation (18) m times with respect to
q, then setting q = 0, and finally dividing them by m!, we obtain a mth-order
deformation equation

Lf

[
fm(η, ξ) − χmfm−1(η, ξ)

]
= �fR

f
m

(
fm−1

)
, (25)

subject to the initial/boundary conditions

fm(0, ξ) =
∂fm(η, ξ)

∂η

∣∣∣∣
η=0

= 0,
∂fm(η, ξ)

∂η

∣∣∣∣
η=∞

= 0 , (26)

where

Rf
m =

1
(m− 1)!

∂m−1N [
Φ(η, ξ; q)

]
∂qm−1

∣∣∣∣
q=0

. (27)

and

χm =

{
0, m = 1
1, m > 1.

(28)

Note that Rf
m is dependent on the integer power-law index κ. When κ = 1, we

have

Rf
m(fm−1) =

= (1 − ξ)
(

1
2
η
∂2fm−1

∂η2
− ξ

∂2fm−1

∂η∂ξ

)
+
∂3fm−1

∂η3
+

+ ξ

[
m−1∑
i=0

(
fi
∂2fm−1−i

∂η2
− ∂fi

∂η

∂fm−1−i

∂η

)
+ 1 − χm +M

(
χm − ∂fi

∂η

)]
.

(29)

When κ = 2, we have

Rf
m(fm−1) =

= (1 − ξ)
(

1
3
η
∂2fm−1

∂η2
− ξ

∂2fm−1

∂η∂ξ

)
+ 2Am−1+

+ ξ

[
m−1∑
i=0

(
4
3
fi
∂2fm−1−i

∂η2
− ∂fi

∂η

∂fm−1−i

∂η

)
+ 1 − χm +M

(
χm − ∂fi

∂η

)]
,

(30)
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where

Aj =
j∑

i=0

∂2fi

∂η2

∂3fj−i

∂η3
. (31)

When κ = 3, they read

Rf
m(fm−1) =

= (1 − ξ)
(

1
4
η
∂2fm−1

∂η2
− ξ

∂2fm−1

∂η∂ξ

)
+ 3

m−1∑
i=0

Ai
∂2fm−i−1

∂η3
+

+ ξ

[
m−1∑
i=0

(
3
2
fi
∂2fm−1−i

∂η2
− ∂fi

∂η

∂fm−1−i

∂η

)
+ 1 − χm +M

(
χm − ∂fi

∂η

)]
.

(32)

Let f∗
m(η, ξ) denote a special solution of Eq. (25). According to (16), its general

solution reads

fm(η, ξ) = f∗
m(η, ξ) + C1 exp(−η) + C2 exp(η) + C3 , (33)

where the constants C1, C2, C3 are determined by the boundary conditions (26),
i.e.,

C2 = 0, C1 =
∂f∗

m(η, ξ)
∂η

∣∣∣∣
η=0

, C3 = −C1 − f∗
m(0, ξ) . (34)

In this way, it is easy to obtain the linear equation (25) one after the other in the
order m = 1, 2, 3, . . . , especially by means of the symbolic computation software,
such as Mathematica, Maple.

f η
(η

,ξ
)

η

κ = 2, 3
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Fig. 1. Comparison of fη(η, ξ) of the analytic approximations with the numerical results
at ξ = 0, when κ = 2, 3. Filled circles: numerical results; solid line: 25th-order HAM
approximations.
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Table 1. Comparison of fηη(0) for the steady-state (ξ = 1), when κ = 1.

M 25th-order Pop’s Sparrow et al. Numerical

Results Results [33] Results [34] Results

0.5 1.41980 1.41975 1.418 1.41975
1 1.58536 1.58533 1.584 1.58534

0.5 1.73535 1.73536 1.73536
2 1.87353 1.87353 1.871 1.87353
3 2.12324 2.12324
4 2.34665 2.345 2.34665
5 2.55066 2.55066
10 3.39167 3.39167

3. Analysis of results. Liao [26] proved that as long as the solution
series given by the homotopy analysis method converges, it must be one of exact
solutions of the considered problem. Note that the solution series (23) contains
the auxiliary parameter �f , which we can choose proper values by plotting the
so-called �-curves to ensure that the solution series (23) converges, as suggested
by Liao [25].

When ξ = 0, corresponding to the initial state, our analytic series solutions
agree well with the numerical results, as shown in Fig. 1. When ξ = 1, correspond-
ing to the steady state, our analytic series solutions converge to the numerical ones
in the whole region 0 ≤ η < +∞, as shown in Table 1 and Fig. 2. Similarly, in
the whole region ξ ∈ [0, 1], the series solutions (23) are convergent, as shown in
Figs. 3–4. In fact, we find out that our series solutions (23) are convergent for

f η
(η

,ξ
)

η

κ = 1, 2, 3

1.2
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0.9
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0.7

0.6

0.5
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0.2

0.1

0 1 2 3 4 5 6

Fig. 2. Comparisons of fη(η, ξ) of the analytic approximations with the numerical results
at ξ = 1 for the different power-law index κ, when M = 1. Filled circles: numerical
results; solid line: 25th-order HAM approximations.
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f η
η
(0

,ξ
)

ξ

M = 10

M = 5

M = 3

M = 1
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3.5
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2.5

2.0
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1.0

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 3. Analytic approximations of fηη(0, ξ) for different M , when κ = 1. Solid line:
20th-order HAM approximations; filled circles: 25th-order HAM approximations.

all ξ ∈ [0, 1]. Thus, applying the homotopy analysis method, we obtain accurate
analytic solutions uniformly valid for all ξ ∈ [0, 1] in the whole region 0 ≤ η < +∞.

The variation of the surface shear stresses with the dimensionless time ξ for
several values of κ and M is illustrated in Figs. 3–4. At the start of the motion
(ξ = 0), the surface shear stresses are independent on M , because M is multiplied

f η
η
(0

,ξ
)

ξ

M = 5

M = 3

M = 1

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4. Analytic approximations of fηη(0, ξ) for different M , when κ = 2. Solid line:
20th-order HAM approximations; filled circles: 25th-order HAM approximations.
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f η
(η

,ξ
)

ηξ1/2

τ = 0.01, 0.05, 0.1, 0.2, 0.5, 10,

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5

Fig. 5. The variation of the velocity profile fη(η, ξ), when κ = 3 and M = 1.

by ξ. Thus, M increases as ξ increases. The surface shear stresses increase as the
magnetic parameter M increases because of the enhanced Lorentz force, which
imparts additional momentum into the boundary layer. This reduces the boundary
layer thickness.

The variation of the velocity profiles as a function of τ , when κ = 3 and
M = 1, is shown in Fig. 5. We can see that these velocity profiles develop rapidly
from rest as τ increases from zero to ∞.

C
f
R

e1
/
κ
+

1
x

τ

M = 1, 3, 5, 10

9
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2

1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 6. The local skin friction coefficient as a function of τ for the different M when
κ = 1.
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M = 1, 3, 5
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Fig. 7. The local skin friction coefficient as a function of τ for the different M when
κ = 2.

The curves of the local skin friction coefficient Cf versus τ for a fixed value of
either the power-law index n or the magnetic parameter M are shown in Figs. 6–8,
respectively. Note that at the same dimensionless time τ ∈ (0,+∞) and for the
same power-law index κ the skin friction coefficient increases as the values of the
magnetic parameter M enlarge.
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/
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1
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τ
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 8. The local skin friction coefficient as a function of τ for the different M when
κ = 3.
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Thus, by the homotopy method, we have obtained the analytic series solutions,
which are accurate and uniformly valid for all dimensionless time 0 ≤ η < ∞ in
the whole spatial region 0 ≤ η < ∞. To the best of our knowledge, such kind of
analytic solutions have never been reported.

4. Conclusions. In this paper, we apply the homotopy analysis method
to study the unsteady MHD flow of a non-Newtonian fluid near the forward stagna-
tion point. By this analytic technique, the uniformly valid series solutions are ob-
tained, which are valid for all time 0 ≤ τ <∞ and in the whole region 0 ≤ η <∞.
To the best of our knowledge, such kinds of analytic solutions have never been
reported. The effects of integral power-law index of the non-Newtonian fluids for
κ = 1, 2, 3 and magnetic parameter M ≤ 10 on the velocity are considered. The
proposed analytic approach has general meaning and thus may be applied similarly
to other unsteady boundary-layer flows to get accurate analytic solutions valid for
all the time.
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