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Analytic approximations of the Von Kármán’s plate equations in integral form for a circular plate under external uniform pressure
to arbitrary magnitude are successfully obtained by means of the homotopy analysis method (HAM), an analytic approximation
technique for highly nonlinear problems. Two HAM-based approaches are proposed for either a given external uniform pressure Q
or a given central deflection, respectively. Both of them are valid for uniform pressure to arbitrary magnitude by choosing proper
values of the so-called convergence-control parameters c1 and c2 in the frame of the HAM. Besides, it is found that the HAM-
based iteration approaches generally converge much faster than the interpolation iterative method. Furthermore, we prove that the
interpolation iterative method is a special case of the first-order HAM iteration approach for a given external uniform pressure
Q when c1 = −θ and c2 = −1, where θ denotes the interpolation iterative parameter. Therefore, according to the convergence
theorem of Zheng and Zhou about the interpolation iterative method, the HAM-based approaches are valid for uniform pressure
to arbitrary magnitude at least in the special case c1 = −θ and c2 = −1. In addition, we prove that the HAM approach for the Von
Kármán’s plate equations in differential form is just a special case of the HAM for the Von Kármán’s plate equations in integral
form mentioned in this paper. All of these illustrate the validity and great potential of the HAM for highly nonlinear problems,
and its superiority over perturbation techniques.
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1 Introduction

The Von Kármán’s plate equations [1, 2] in integral form de-
scribing the large deflection of a circular thin plate under uni-
form pressure read

N1[φ(y), S (y)] =φ(y) +
∫ 1

0

1
ε2 K(y, ε)S (ε)φ(ε)dε

+

∫ 1

0
K(y, ε)Qdε = 0, (1)

*Corresponding author (email: sjliao@sjtu.edu.cn)

N2[φ(y), S (y)] = S (y) − 1
2

∫ 1

0

1
ε2 G(y, ε)φ2(ε)dε = 0, (2)

in which

K(y, ε) =

 (λ − 1)yε + y, y ≤ ε,
(λ − 1)yε + ε, y > ε,

(3)

G(y, ε) =

 (µ − 1)yε + y, y ≤ ε,
(µ − 1)yε + ε, y > ε,

(4)
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with the definitions

y =
r2

R2
a
, W(y) =

√
3(1 − ν2)

w(y)
h

, φ(y) = y
dW(y)

dy
, (5)

S (y) = 3(1 − ν2)
R2

aNr

Eh3 y, Q =
3(1 − ν2)

√
3(1 − ν2)R4

a

4Eh4 p, (6)

where r is the radial coordinate whose origin locates at the
center of the plate; the constants E, ν, Ra, h are elastic mod-
ulus, the Poisson’s ratio, radius and thickness of the plate,
respectively; w(y) and Nr denote the deflection and the radial
membrane force of the plate; p represents the external uni-
form pressure; λ and µ are parameters related to the boundary
conditions at y = 1. From eq. (5), we have the dimensionless
central deflection,

W(y) = −
∫ 1

y

1
ε
φ(ε)dε. (7)

Without loss of generality, let us consider here the large de-
flection of a circular thin plate with clamped boundary, say,

λ = 0, µ = 2/(1 − ν). (8)

Besides, the Poisson’s ratio ν is taken to be 0.3.
In 1958, Keller and Reiss [3] proposed the interpolation

iterative method to solve the Von Kármán’s plate equations
in integral form by introducing an interpolation iterative pa-
rameter to the iteration procedure, and they successfully ob-
tained convergent solutions for uniform pressure as high as
Q = 7000. The iterative procedures of the interpolation iter-
ative method [1, 3] for the Von Kármán’s plate equations in
integral form are as follows:

ψn(y) =
1
2

∫ 1

0

1
ε2 G(y, ε)ϑ2

n(ε)dε,

ϑn+1(y) =(1 − θ)ϑn(y) − θ
∫ 1

0
K(y, ε)Qdε

− θ
∫ 1

0

1
ε2 K(y, ε)ϑn(ε)ψn(ε)dε,

(9)

with the definition of such an initial guess

ϑ1(y) = −Qθ
2

[
(λ + 1)y − y2

]
, (10)

where θ is an interpolation iterative parameter. It should be
emphasized that Zheng and Zhou [1,4] gave an elegant proof
about the convergence of the interpolation iterative method,
say, convergent solutions can be obtained by the interpolation
iterative method for arbitrary value of uniform pressure Q if
a proper interpolation iterative parameter is chosen.

The Von Kármán’s plate equations [2] in differential
form for a circular plate under external uniform pressure

to arbitrary amplitude have been successfully solved [5] by
means of the homotopy analysis method (HAM) [6-17],
an analytic approximation method for highly nonlinear
problems. By choosing a proper value of the so-called
convergence-control parameter c0, convergent series solu-
tions for four types of boundary conditions were obtained
even in the cases with rather high nonlinearity [5]. It is found
that the convergence-control parameter c0 plays an important
role: it is the convergence-control parameter c0 that guaran-
tees the convergence of solution series, and thus distinguishes
the HAM from other analytic methods. Besides, it is found
that the iteration technique can greatly boost the computa-
tional efficiency. In addition, it was even proved in ref. [5]
that perturbation methods for an arbitrary perturbation quan-
tity (including Vincent’s [18] and Chien’s [19] perturbation
methods) and the modified iteration method [20] are only the
special cases of the HAM when c0 = −1.

In history, the Von Kármán’s plate is a very classical prob-
lem in nonlinear mechanics. So, in this paper, we further
propose two approaches in the frame of the HAM to solve
the Von Kármán’s plate equations in integral form. It is found
that convergent solution series can be obtained within a rather
large ratio of central deflection to plate thickness w(0)/h >

20, even when Q = 39000, corresponding to a rather high
nonlinearity. Especially, we prove that the interpolation
iterative method [3] is also a special case of the HAM,
too. Moreover, we further prove that the HAM for the two
forms, i.e., differential and integral form, of the Von
Kármán’s plate equations [2] are equivalent if we choose the
same initial guesses, but the HAM for the Von Kármán’s plate
equations in integral form is more general, since the initial
guesses no longer have to satisfy the boundary conditions of
the Von Kármán’s plate equations in differential form. There-
fore, according to the convergence theorem of Zheng and
Zhou [1,4] about the interpolation iterative method, it is easy
to understand why the HAM can guarantee the convergence
of solution series for the two forms of the Von Kármán’s plate
equations under uniform pressure to arbitrary amplitude.

2 HAM approach for a given external uniform

pressure Q to arbitrary amplitude

2.1 Mathematical formulas

Like ref. [5], we express φ(y) and S (y) as:

φ(y) =
+∞∑
k=1

ak · yk, S (y) =
+∞∑
k=1

bk · yk, (11)

where ak and bk are constant coefficients to be determined.
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Let φ0(y) and S0(y) be initial guesses of φ(y) and S (y), re-
spectively. Moreover, let c1 and c2 denote the non-zero aux-
iliary parameters, called the convergence-control parameters,
and q ∈ [0, 1] the embedding parameter, respectively. Then
we construct a family of equations in q ∈ [0, 1], namely the
zeroth-order deformation equations

(1 − q)
[
Φ(y, q) − φ0(y)

]
=c1q

[
Φ(y, q) +

∫ 1

0

1
ε2 K(y, ε)Φ(ε, q)Ξ(ε, q)dε

+

∫ 1

0
K(y, ε)Qdε

]
, (12)

(1 − q)
[
Ξ(y, q) − S0(y)

]
=c2q

[
Ξ(y, q) − 1

2

∫ 1

0

1
ε2 G(y, ε)Φ2(ε, q)dε

]
. (13)

When q = 0, eqs. (12) and (13) have the solution

Φ(y, 0) = φ0(y), Ξ(y, 0) = S0(y). (14)

When q = 1, eqs. (12) and (13) are equivalent to the original
eqs. (1) and (2), provided

Φ(y, 1) = φ(y), Ξ(y, 1) = S (y). (15)

Therefore, as q increases from 0 to 1, Φ(y, q) varies continu-
ously from the initial guess φ0(y) to φ(y), so does Ξ(y, q) from
the initial guess S0(y) to S (y).

Using eq. (14), we have the Maclaurin series with respect
to the embedding parameter q:
Φ(y, q) = φ0(y) +

+∞∑
k=1

φk(y) qk,

Ξ(y, q) = S0(y) +
+∞∑
k=1

Sk(y) qk,

(16)

where

φk(y) = Dk[Φ(y, q)], Sk(y) = Dk[Ξ(y, q)], (17)

in which

Dk[ f ] =
1
k!
∂k f
∂qk

∣∣∣∣∣
q=0

(18)

is called the kth-order homotopy-derivative of f .
Note that there are two convergence-control parameters c1

and c2 in the Maclaurin series (16). Assume that c1 and c2

are properly chosen so that the power series (16) converge
at q = 1. Then according to eq. (15), we have the so-called
homotopy-series solutions

φ(y) =
+∞∑
k=0

φk(y), S (y) =
+∞∑
k=0

Sk(y). (19)

Substituting the Maclaurin series (16) into the zeroth-order
deformation eqs. (12) and (13), and then equating the like-
power of the embedding parameter q ∈ [0, 1], we have the
so-called kth-order deformation equations

φk(y) =χkφk−1(y) + c1 δ1,k−1(y), (20)

Sk(y) =χkSk−1(y) + c2 δ2,k−1(y), (21)

where

δ1,k−1(y)

=φk−1(y) + (1 − χk)
∫ 1

0
K(y, ε)Qdε

+

∫ 1

0

1
ε2 K(y, ε)

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε, (22)

δ2,k−1(y)

=Sk−1(y) − 1
2

∫ 1

0

1
ε2 G(y, ε)

k−1∑
i=0

φi(ε)φk−1−i(ε)dε, (23)

with the definition

χk =

 0, when k ≤ 1,

1, when k > 1.
(24)

Note that, in the frame of the HAM, we have great free-
dom to choose the initial guesses φ0(y) and S0(y). But φ0(y)
and S0(y) should satisfy the expression (11), thus, we choose
the initial guesses:

φ0(y) =
Qc0

2
[(λ + 1)y − y2], S0(y) = 0. (25)

Then, by means of eqs. (20) and (21), φk(y) and Sk(y) can
be obtained step by step, starting from k = 1. The nth-order
approximations of φ(y) and S (y) read

φ̃(y) =
n∑

k=0

φk(y), S̃ (y) =
n∑

k=0

Sk(y). (26)

For the sake of simplicity, we set

c1 = c2 = c0. (27)

Define the squared residual error

E =
∫ 1

0

{(
N1

[
φ̃(y), S̃ (y)

] )2
+

(
N2

[
φ̃(y), S̃ (y)

] )2}
dy, (28)

where the nonlinear operators defined by N1 and N2 are re-
lated to the original eqs. (1) and (2). Note that the squared
residual error E is dependent upon the unknown convergence-
control parameter c0. Obviously, the smaller the E, the more
accurate the HAM approximations.
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2.2 Results given by the non-iteration approach

First of all, the normal HAM approach without iteration is
used to solve the Von Kármán’s plate equations with the
clamped boundary for a given external uniform pressure Q.
Without loss of generality, let us consider the case of Q = 5.
At the beginning, the so-called convergence-control parame-
ter c0 is unknown. Its optimal value (i.e., c0 = −0.35 in this
case) is determined by the minimum of the squared residual
error E defined by eq. (28), although convergent results can
be obtained for any c0 ∈ (−0.7, 0). According to Table 1,
the squared residual error quickly decreases to 2 × 10−7 by
means of c0 = −0.35 in the case of Q = 5, corresponding to
w(0)/h = 0.62. Note that Vincent’s perturbation results [18]
(using Q as the perturbation quantity) for a circular plate with
the clamped boundary are only valid for w(0)/h < 0.52, cor-
responding to Q < 3.9, and thus fail in the case of Q = 5.
So, the convergence control parameter c0 indeed provides us
a simple way to guarantee the convergence of solution series.

It is found in a similar way that, for a given value of Q, the
optimal value of c0 can be obtained, which can be expressed
by such an empirical formula

c0 = −
13

13 + Q2 (0 < Q ≤ 5). (29)

The convergent homotopy-approximations of w(0)/h in case
of different values of Q are given in Table 2. For larger value
of Q, one can also gain the convergent series solution, but
with more CPU times. In this case, the iteration is used to
accelerate the convergence, as described below.

Table 1 The squared residual error E and the approximations of w(0)/h in
the case of Q = 5 by means of the HAM without iteration (see sect. 2.1)
using c0 = −0.35

m, order of approx. E w(0)/h

10 3 × 10−4 0.64

20 7 × 10−5 0.62

30 1 × 10−5 0.62

40 2 × 10−6 0.62

50 2 × 10−7 0.62

Table 2 The homotopy-approximations of w(0)/h versus Q, given by the
HAM-based approach without iteration (see sect. 2.1) using the optimal
convergence-control parameter c0 given by the empirical formula (29)

Q c0 w(0)/h

1 −0.93 0.15

2 −0.76 0.29

3 −0.59 0.41

4 −0.45 0.53

5 −0.34 0.62

2.3 Convergence acceleration by iteration

As shown in ref. [5], the convergence of the homotopy-series
solutions can be greatly accelerated by means of iteration
technique, so the Mth-order homotopy-approximations

φ∗(y) ≈ φ0(y) +
M∑

k=1

φk(y), S ∗(y) ≈ S0(y) +
M∑

k=1

Sk(y), (30)

are used as the new initial guesses for the next iteration, say,
φ0(y) = φ∗(y) and S0(y) = S ∗(y). This provides us the Mth-
order iteration approach of the HAM.

Without loss of generality, let us consider the case of
Q = 1000. As shown in Figure 1, the higher the order M
of iteration, the less times of iteration are required for a given
accuracy-level of approximation, but the slower the approxi-
mation converges1). Thus, from the view-point of computa-
tional efficiency, we choose the first-order iteration approach
(i.e., M = 1). It is found that, the corresponding optimal
convergence-control parameter c0 can be expressed by the
empirical formula:

c0 = −
23

Q + 23
, (31)

within the range of Q ≤ 1000. The approximations of w(0)/h
in case of different values of Q are listed in Table 3.

2.4 Relations to the interpolation iterative method

Here we prove that the interpolation iterative method [3] is a
special case of the first-order HAM iteration approach men-
tioned above in sect. 2.3.

Recall that θ denotes the interpolation iterative parameter
in the interpolation iterative method [3]. By means of the
first-order HAM-based iteration approach, the new approxi-
mations φ∗(y) = φ0(y) + φ1(y) and S ∗(y) = S0(y) + S1(y) are
used as the new initial guesses φ0(y) and S0(y) for the next
iteration, since the HAM provides us the freedom to choose
initial guesses.

Note that the HAM provides us freedom to choose the
convergence-control parameters c1 and c2. So, let us choose
c1 = −θ and c2 = −1. Then, according to eqs. (20) and (24),
we have the first-order homotopy-approximations of φ(y) and
S (y)

S ∗(y) = S0(y) + S1(y)

= S0(y) − δ2,0(y)

=
1
2

∫ 1

0

1
ε2 G(y, ε)φ2

0(ε)dε, (32)

1) All examples considered in this paper are computed using a laptop, which has a core i7 3.60 GHz process with 8 GB memory.
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Figure 1 (Color online) The squared residual error E versus the times of iteration (a) and the CPU times (b) in the case of Q = 1000, given by the HAM-based
iteration approach using the convergence-control parameter c0 = −0.02. Solid line: first-order; long-dashed line: second-order; dashed line: third-order;
dash-dotted line: fourth-order; dash-double-dotted line: fifth-order.

Table 3 The homotopy-approximations of w(0)/h in case of different val-
ues of Q, given by the first-order HAM iteration approach using the optimal
convergence-control parameter c0 given by eq. (31)

Q c0 w(0)/h

200 −0.10 3.5

400 −0.05 4.5

600 −0.04 5.2

800 −0.03 5.7

1000 −0.02 6.1

φ∗(y) =φ0(y) + φ1(y)

=φ0(y) − θδ1,0(y)

=(1 − θ)φ0(y) − θ
∫ 1

0
K(y, ε)Qdε

− θ
∫ 1

0

1
ε2 K(y, ε)φ0(ε)S0(ε)dε. (33)

Since the initial guesses are given at the beginning, we take
the following iterative procedures:

(A) Calculate S ∗(y) according to eq. (32);

(B) replace S0(y) by S ∗(y) as the new initial guess, i.e.,
S0(y) = S ∗(y);

(C) calculate φ∗(y) according to eq. (33);

(D) replace φ0(y) by φ∗(y) as the new initial guess, i.e.,
φ0(y) = φ∗(y).

In the nth times of iteration, write

Φ̂n(y) = φ∗(y), Ξ̂n−1(y) = S ∗(y).

Then, the procedures of the first-order HAM iteration ap-

proach are expressed by

Ξ̂n−1(y) =
1
2

∫ 1

0

1
ε2 G(y, ε)Φ̂2

n−1(ε)dε,

Φ̂n(y) =(1 − θ)Φ̂n−1(y) − θ
∫ 1

0
K(y, ε)Qdε

− θ
∫ 1

0

1
ε2 K(y, ε)Φ̂n−1(ε)Ξ̂n−1(ε)dε.

(34)

Since the HAM provides us freedom to choose the initial
guess, let us choose the initial guess

Φ̂0(y) = −Qθ
2

[
(λ + 1)y − y2

]
. (35)

Note that, eqs. (34) and (35) are exactly the same as the
iterative procedures (9) and (10) of the interpolation iterative
method [3]. Thus, the interpolation iterative method [3] is in-
deed a special case of the first-order HAM iteration approach
when c1 = −θ and c2 = −1. It should be emphasized that the
interpolation iterative method [3] is valid for uniform exter-
nal pressure to arbitrary magnitude, as proved by Zheng and
Zhou [4]. So, according to Zheng and Zhou’s convergence
theorem [4], the HAM-based approach mentioned in sect. 2
is valid for an uniform pressure to arbitrary amplitude, at least
in some special cases such as c1 = −θ and c2 = −1. This once
again reveals the important role of the convergence-control
parameters c1 and c2 in the frame of the HAM. Indeed, it is
the so-called convergence control parameter that differs the
HAM from all other analytic approximation methods.

3 HAM approach for given central deflection

Note that the external uniform pressure Q is used in the in-
terpolation iterative method [3]. For details, please refer to
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Zheng [1]. However, according to Chien [19], it makes sense
to introduce the central deflection into the Von Kármán’s
plate equations so as to enlarge the convergent region. Based
on this knowledge, we propose here a HAM approach for a
given central deflection to solve the Von Kármán’s plate equa-
tions in integral form with the clamped boundary condition.
This new HAM-based approach is even more efficient than
the previous one for a given Q described in sect. 2.

3.1 Mathematical formulas

Given

W(0) = a,

we have from eq. (7) an additional restriction equation∫ 1

0

1
ε
φ(ε)dε = −a. (36)

Let φ0(y) and S0(y) denote initial guesses of φ(y) and S (y),
which satisfy the restriction condition (36), c1 and c2 the
convergence-control parameters, q ∈ [0, 1] the embedding
parameter, respectively. Note that the external uniform pres-
sure Q is unknown here for a given central deflection a. Then,
we construct the so-called zeroth-order deformation equa-
tions

(1 − q)
[
Φ̃(y, q) − φ0(y)

]
=c1q

[
Φ̃(y, q) +

∫ 1

0

1
ε2 K(y, ε)Φ̃(ε, q)Ξ̃(ε, q)dε

+

∫ 1

0
K(y, ε)Θ̃(q)dε

]
, (37)

(1 − q)
[
Ξ̃(y, q) − S0(y)

]
=c2q

[
Ξ̃(y, q) − 1

2

∫ 1

0

1
ε2 G(y, ε)Φ̃2(ε, q)dε

]
, (38)

subject to the restriction condition∫ 1

0

1
ε
Φ̃(ε, q)dε = −a. (39)

Note that Φ̃(y, q), Ξ̃(y, q) and Θ̃(q) correspond to the un-
known φ(y), S (y) and Q, respectively, as mentioned below.
Similar to sect. 2.1, we can expand Φ̃(y, q), Ξ̃(y, q) and Θ̃(q)
into the Maclaurin series:

Φ̃(y, q) =
+∞∑
k=0

φk(y)qk,

Ξ̃(y, q) =
+∞∑
k=0

Sk(y)qk,

Θ̃(q) =
+∞∑
k=0

Qk qk,

(40)

in which
φk(y) = Dk

[
Φ̃(y, q)

]
,

Sk(y) = Dk

[
Ξ̃(y, q)

]
,

Qk = Dk

[
Θ̃(q)

]
,

(41)

with the definition Dk by eq. (18). The so-called homotopy-
series solutions read

φ(y) =
+∞∑
k=0

φk(y), S (y) =
+∞∑
k=0

Sk(y), Q =
+∞∑
k=0

Qk. (42)

Substituting the Maclaurin series (40) into the zeroth-order
deformation eqs. (37)-(39), and then equating the like-power
of q, we have the so-called kth-order deformation equations

φk(y) − χkφk−1(y)

=c1

[
φk−1(y) +

∫ 1

0

1
ε2 K(y, ε)

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε

+

∫ 1

0
K(y, ε)Qk−1dε

]
, (43)

Sk(y) − χkSk−1(y)

=c2

Sk−1(y) −
∫ 1

0

1
2ε2 G(y, ε)

k−1∑
i=0

φi(ε)φk−1−i(ε)dε

 , (44)

subject to the restriction condition∫ 1

0

1
ε
φk(ε)dε = 0, (45)

where χk is defined by eq. (24), and Qk−1 can be determined
by the restriction condition (45). Consequently, φk(y) and
Sk(y) of eqs. (43)-(45) are obtained. Then, we have the nth-
order approximation:

φ(y) =
n∑

k=0

φk(y), S (y) =
n∑

k=0

Sk(y), Q =
n∑

k=0

Qk. (46)

We choose

φ0(y) =
−2a

2λ + 1

[
(λ + 1)y − y2

]
, S0(y) = 0, (47)

as the initial guesses of φ(y) and S (y), respectively. Besides,
we also set

c1 = c2 = c0, (48)

so as to simplify the choice of the optimal convergence-
control parameters.
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3.2 Results given by the non-iteration HAM approach

Without loss of generality, let us consider the case of a = 5,
corresponds to w(0)/h = 3.0. Note that the convergence-
control parameter c0 is unknown at the beginning. Its optimal
value (i.e., −0.25 in this case) is determined by the minimum
of the squared residual error E defined by eq. (28). Accord-
ing to Table 4, the squared residual error quickly decreases to
4 × 10−7 by means of c0 = −0.25. Note that, the Chien’s per-
turbation method [19] (using a as the perturbation quantity)
is only valid for w(0)/h < 2.44, equivalent to a < 4, for a cir-
cular plate with clamped boundary. This again illustrates the
superiority of the HAM-based approach over the perturbation
method [19].

Given a value of a, the optimal convergence-control pa-
rameter c0 can be obtained in a similar way, which can be
expressed by such an empirical formula:

c0 = −
11

11 + a2 , (0 < a ≤ 5). (49)

The convergent results of the external uniform pressure Q in
case of different values of a are given in Table 5.

3.3 Convergence acceleration by means of iteration

In this subsection, the first-order HAM iteration approach is
used for a given central deflection. Without loss of general-
ity, let us first consider the same case of a = 5. Note that
the squared residual error quickly decreases to 5 × 10−23, as
shown in Table 6. In addition, as shown in Figure 2, it is
much faster to obtain convergent results by introducing W(0)

Table 4 The squared residual error E and the approximations of Q in the
case of a = 5 for a circular plate with clamped boundary, given by the HAM
without iteration using c0 = −0.25

k, order of approx. E Q

20 3 × 10−2 132.3

40 2 × 10−3 132.5

60 9 × 10−5 132.3

80 1 × 10−6 132.2

100 4 × 10−7 132.2

Table 5 The results of the uniform pressure Q in case of different values of
a for a circular plate with clamped boundary, given by the HAM approach
without iteration using the optimal c0 given by eq. (49)

a c0 Q

1 −0.92 4.8

2 −0.73 14.6

3 −0.55 35.2

4 −0.41 72.4

5 −0.31 132.2

Table 6 The squared residual error E and the approximations of Q versus
the iteration times in the case of a = 5 for a circular plate with clamped
boundary, given by the first-order HAM iteration approach using c0 = −0.5

m, times of iteration. E Q

10 7 × 10−5 132.2

20 2 × 10−10 132.2

30 1 × 10−18 132.2

40 5 × 10−23 132.2
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Figure 2 (Color online) The squared residual error E versus the CPU time
in the case of Q = 1000 (corresponding to w(0)/h = 6.1), given by the
interpolation iterative method [3], and the HAM-based approach for given
external uniform pressure Q and central deflection a, respectively. Dash-
double-dotted line: results given by the interpolation iterative method [3]
using the interpolation parameter θ = 0.02; dashed line: results given by the
first-order HAM iteration approach for the Von Karman’s plate equations in
integral form with a given external uniform pressure Q using c0 = −0.05;
dash-dotted line: results given by the first-order HAM iteration approach [5]
for the Von Kármán’s plate equations in differential form with a given cen-
tral deflection a using c0 = −0.25; solid line: results given by the first-order
HAM iteration approach for the Von Kármán’s plate equations in integral
form with a given central deflection a using c0 = −0.25.

into the Von Kármán’s plate equations. Therefore, using the
central deflection indeed makes sense. It should be empha-
sized that the HAM-based iteration approach converges much
faster than the interpolation iterative method [3], as shown in
Figure 2.

Similarly, the convergent results can be obtained by means
of the optimal convergence-control parameter with the em-
pirical formula:

c0 = −
25

25 + a2 , (50)

within the range of a ≤ 35, equivalent to w(0)/h = 21.2, as
shown in Table 7. According to Figure 3, as a increases, the
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Table 7 The approximations of Q in case of different values of a for a
circular plate with clamped boundary, given by the first-order HAM itera-
tion approach with the optimal convergence-control parameter c0 given by
eq. (50)

a c0 Q

5 −0.50 132.2

15 −0.10 3152.1

25 −0.04 14334.1

35 −0.02 39053.6

a
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Figure 3 (Color online) The convergence-control parameter c0 and the
interpolation parameter θ versus the central deflection a for a circular plate
with clamped boundary, given by the first-order HAM iteration approach for
given central deflection a and the interpolation iterative method [1] for given
external uniform pressure Q. Dashed line: −θ; solid line: c0 given by eq.
(50).

interpolation iterative parameter θ in the interpolation it-
erative method [3] tends to 0 much faster than the opti-
mal convergence-control parameter c0 given by eq. (50).
This explains why the HAM-based iteration approach con-
verges much faster than the interpolation iterative method
[3]. This reveals once again the importance of the so-called
convergence-control parameters in the frame of the HAM.

3.4 Relations to the HAM for the Von Kármán’s plate
equations in differential form

Here we prove that the HAM approach [5] for the Von
Kármán’s plate equations in differential form is only a spe-
cial case of the HAM approach mentioned in sect. 3.1.

Rewriting eqs. (20) and (21), we have

φk(y)

=χkφk−1(y) + c1

[
φk−1(y) + Qk−1

(
−y2

2
+
λ + 1

2
y
)

+

∫ y

0

1
ε

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε

+

∫ 1

y

y
ε2

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε

+ (λ − 1)
∫ 1

0

y
ε

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε
]
, (51)

Sk(y)

=χkSk−1(y) + c2

[
Sk−1(y)

− µ − 1
2

∫ 1

0

y
ε

k−1∑
i=0

φi(ε)φk−1−i(ε)dε

− 1
2

∫ y

0

1
ε

k−1∑
i=0

φi(ε)φk−1−i(ε)dε

− 1
2

∫ 1

y

y
ε2

k−1∑
i=0

φi(ε)φk−1−i(ε)dε
]
. (52)

Differentiating eqs. (51) and (52) with respect to y, we gain

dφk(y)
dy

=(c1 + χk)
dφk−1(y)

dy

+ c1

[
(λ − 1)

∫ 1

0

1
ε

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε

+

∫ 1

y

1
ε2

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε + Qk−1

(
λ + 1

2
− y

) ]
, (53)

dSk(y)
dy

=(c2 + χk)
dSk−1(y)

dy

− c2

2

[
(µ − 1)

∫ 1

0

1
ε

k−1∑
i=0

φi(ε)φk−1−i(ε)dε

+

∫ 1

y

1
ε2

k−1∑
i=0

φi(ε)φk−1−i(ε)dε
]
, (54)

and
d2φk(y)

dy2 =(c1 + χk)
d2φk−1(y)

dy2

− c1

[
1
y2

k−1∑
i=0

φi(y)Sk−1−i(y) + Qk−1

]
, (55)

d2Sk(y)
dy2 =(c2 + χk)

d2Sk−1(y)
dy2

+ c2
1

2y2

k−1∑
i=0

φi(y)φk−1−i(y). (56)
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Setting y = 0 in eqs. (51) and (52), it holdsφk(0) = (c1 + χk)φk−1(0),

Sk(0) = (c2 + χk)Sk−1(0),
(57)

which lead toφk(0) = (c1 + χk)φk−1(0) = · · · = c1(c1 + 1)k−1φ0(0),

Sk(0) = (c2 + χk)Sk−1(0) = · · · = c2(c2 + 1)k−1S0(0).
(58)

Similarly, setting y = 1 in eqs. (51)-(54), we have

φk(1) − (c1 + χk)φk−1(1)

=λ c1

∫ 1

0

1
ε

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε +
Qk−1

2

 , (59)

dφk(y)
dy

∣∣∣∣∣∣
y=1
− (c1 + χk)

dφk−1(y)
dy

∣∣∣∣∣∣
y=1

=(λ − 1)c1

∫ 1

0

1
ε

k−1∑
i=0

φi(ε)Sk−1−i(ε)dε +
Qk−1

2

 , (60)

Sk(1) − (c2 + χk)Sk−1(1)

= − µ c2

2

∫ 1

0

1
ε

k−1∑
i=0

φi(ε)φk−1−i(ε)dε, (61)

dSk(y)
dy

∣∣∣∣∣∣
y=1
− (c2 + χk)

dSk−1(y)
dy

∣∣∣∣∣∣
y=1

= − (µ − 1)c2

2

∫ 1

0

1
ε

k−1∑
i=0

φi(ε)φk−1−i(ε)dε. (62)

Then, it is straight-forward to gain[
φk(y) − λ

λ − 1
dφk(y)

dy

] ∣∣∣∣∣∣
y=1

=(c1 + χk)
[
φk−1(y) − λ

λ − 1
dφk−1(y)

dy

] ∣∣∣∣∣∣
y=1

= · · ·

=c1(c1 + 1)k−1
[
φ0(y) − λ

λ − 1
dφ0(y)

dy

] ∣∣∣∣∣∣
y=1
, (63)

and[
Sk(y) − µ

µ − 1
dSk(y)

dy

] ∣∣∣∣∣∣
y=1

=(c2 + χk)
[
Sk−1(y) − µ

µ − 1
dSk−1(y)

dy

] ∣∣∣∣∣∣
y=1

=c2(c2 + 1)k−1
[
S0(y) − µ

µ − 1
dS0(y)

dy

] ∣∣∣∣∣∣
y=1
. (64)

If we choose c1 = c2 = c0 and let the initial guesses
φ0(y) and S0(y) be the same as that chosen in the HAM ap-
proach [5], which satisfy the boundary conditions of the Von
Kármán’s plate equations in differential form, i.e.,
φ0(0) = S0(0) = 0, φ0(1) =

λ

λ − 1
dφ0(y)

dy

∣∣∣∣∣
y=1
,

S0(1) =
µ

µ − 1
dS0(y)

dy

∣∣∣∣∣
y=1
,

∫ 1

0

1
ε
φ0(ε)dε = −a,

(65)

then according to eqs. (58), (63) and (64), we have
φk(0) = Sk(0) = 0, φk(1) =

λ

λ − 1
dφk(y)

dy

∣∣∣∣∣
y=1
,

Sk(1) =
µ

µ − 1
dSk(y)

dy

∣∣∣∣∣
y=1
.

(66)

Note that, the governing eqs. (55) and (56), the restriction
condition (45), and the boundary conditions (66) are exactly
the same as the HAM approach [5] for the Von Kármán’s
plate equations in differential form (for details, please refer
to sect. 2 in ref. [5]). So, the HAM approach [5] for the Von
Kármán’s plate equations in differential form is just a special
case of the HAM mentioned above in sect. 3.1.

Note that, if we choose c1 ∈ (−2, 0) and c2 ∈ (−2, 0), then
according to eqs. (58), (63) and (64)), we have

φ(0) =φ0(0) +
+∞∑
k=1

φk(0)

=φ0(0)

1 + +∞∑
k=1

c1(c1 + 1)k−1

 = 0, (67)

S (0) =S0(0) +
+∞∑
k=1

Sk(0)

=S0(0)

1 + +∞∑
k=1

c2(c2 + 1)k−1

 = 0, (68)

[
φ(y) − λ

λ − 1
dφ(y)

dy

] ∣∣∣∣∣∣
y=1

=

+∞∑
k=0

[
φk(y) − λ

λ − 1
dφk(y)

d

] ∣∣∣∣∣∣
y=1

=

1 + +∞∑
k=1

c1(c1 + 1)k−1

 [φ0(y) − λ

λ − 1
dφ0(y)

dy

] ∣∣∣∣∣∣
y=1

=0, (69)

[
S (y) − µ

µ − 1
dS (y)

dy

] ∣∣∣∣∣∣
y=1

=

+∞∑
k=0

[
Sk(y) − µ

µ − 1
dSk(y)

dy

] ∣∣∣∣∣∣
y=1
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=

1 + +∞∑
k=1

c2(c2 + 1)k−1

 [S0(y) − µ

µ − 1
dS0(y)

dy

] ∣∣∣∣∣∣
y=1

=0, (70)

since

1 +
+∞∑
k=1

cn(cn + 1)k−1 = 1 +
cn

1 − (cn + 1)
= 0

when |1 + cn| < 1, i.e., cn ∈ (−2, 0), for n = 1, 2.
Thus, the homotopy-series solution φ(y) and S (y) automat-

ically satisfy the boundary conditions of the Von Kármán’s
plate equations in integral form as long as c1 ∈ (−2, 0) and
c2 ∈ (−2, 0), no matter whatever initial guesses we choose,
say, even if they do not satisfy the boundary conditions. In
other words, the HAM approach for the Von Kármán’s plate
equations in integral form mentioned in sect. 3.1 is more gen-
eral than the HAM approach [5].

4 Concluding remarks

In this paper, the homotopy analysis method (HAM) is suc-
cessfully applied to solve the Von Kármán’s plate equations
in integral form for a circular plate with the clamped bound-
ary. Two HAM-based analytic approaches are proposed for
either a given external uniform pressure Q or a given central
deflection of the plate. Both of them are valid for external
uniform pressure to arbitrary magnitude by means of choos-
ing proper values of the so-called convergence-control pa-
rameters c1 and c2 in the frame of the HAM. Besides, it is
found that iteration can greatly accelerate the convergence of
solution series. Furthermore, these two HAM-based iteration
approaches converge much faster than the interpolation itera-
tive method [3], as shown in Figure 2.

In our previous paper [5] about the Von Kármán’s plate
equations in differential form, we proved that the well-known
Vincent’s [18] perturbation method, Chien’s [19] perturba-
tion method and the modified iteration method [20] are only
the special cases of the HAM when c0 = −1. In this pa-
per, using the Von Kármán’s plate equations in integral form,
we further prove that the interpolation iterative method [3] is
also a special case of the first-order HAM iteration approach
for a given external uniform pressure Q when c1 = −θ and
c2 = −1, where θ denotes the interpolation iterative param-
eter. Therefore, according to Zheng and Zhou’s [4] conver-
gence theorem about the interpolation iterative method [3],
the HAM-based approach for the Von Kármán’s plate equa-
tions in integral form is valid for external uniform pressure
to arbitrary magnitude at least in the special cases c1 = −θ
and c2 = −1. More importantly, we prove that the HAM [5]

for the Von Kármán’s plate equations in differential form is
also a special case of the HAM for the Von Kármán’s plate
equations in integral form when we choose the same initial
guesses as in ref. [5]. In other word, the HAM-based ap-
proaches for the Von Kármán’s plate equations in both of the
differential and integral forms are equivalent in some cases.
Thus, now, it is easy to understand why the HAM-based ap-
proach [5] for the Von Kármán’s plate equations in differ-
ential form is valid for uniform pressure to arbitrary ampli-
tude. All of these illustrate the importance of the so-called
convergence-control parameters in the frame of the HAM,
and besides reveal the reason why the HAM can guarantee
the convergence of solution series for highly nonlinear prob-
lems.

Note that the interpolation iterative method [3] is only
for given external uniform pressure Q. It is found that, by
means of choosing an optimal convergence-control parame-
ter, our HAM-based iterative approach for a given external
uniform pressure Q can converge faster than the interpolation
iterative method [3]. It is interesting that our HAM-based ap-
proach for a given central deflection of the plate is even more
efficient than the HAM-based approach for a given external
uniform pressure Q. Besides, as shown in Figure 2, the
HAM-based approach for the Von Kármán’s plate equations
in integral form generally converges faster than the HAM-
based approach for the Von Kármán’s plate equations in dif-
ferential form. Note that, Unlike the HAM-based approach
for the Von Kármán’s plate equations in differential form,
there is no restrictions on boundary conditions for the initial
guesses of the HAM-based approach for the Von Kármán’s
plate equations in integral form, so that we have greater free-
dom to choose a better initial guesses.

In summary, in the frame of the HAM, we can derive all
previous analytic approximation methods for the famous Von
Kármán’s plate equations. More importantly, by choosing
an optimal value of the so-called convergence-control param-
eter, all of the HAM-based approaches can efficiently give
convergent results for uniform external pressure to arbitrary
amplitude, even if the traditional methods become invalid.
All of these illustrate the originality, flexibility and potential
of the HAM for the famous Von Kármán’s plate equations,
and show the superiority of the HAM over the perturbation
methods. Without doubt, the HAM can be applied to solve
some other challenging problems with high nonlinearity.
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