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Abstract. In this paper, we solve the unsteady mixed convection flow near the stagna-
tion point on a heated vertical flat plate embedded in a Darcian fluid-saturated porous
medium by means of an analytic technique, namely the Homotopy Analysis Method.
Different from previous perturbation results, our analytic series solutions are accurate and
uniformly valid for all dimensionless times and for all possible values of mixed convec-
tion parameter, and besides agree well with numerical results. This provides us with a new
analytic approach to investigate related unsteady problems.

Key words: unsteady mixed convection, boundary layer flows, stagnation point, homotopy
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1. Introduction

The investigation of convective heat transfer in fluid-saturated porous
media has many important applications in technology and geothermal
energy recovery, such as oil recovery, food processing, fiber and granular
insulation, design of packed bed reactors, dispersion of chemical contami-
nants in various processes in the chemical industry and in the environment,
etc. Contributions have been made by many researchers, such as Ingham
and Pop (1998), Nield and Bejan (1999), Vafai (2000), Pop and lngham
(2001), Bejan and Kraus (2003), Ingham et al. (2004), Bejan et al. (2004),
Johnson and Cheng (1978), Merkin (1980), Harris et al. (1999), Magyari
et al. (2004), and Aly et al. (2003).

Consider a mixed convection flow at the two-dimensional stagnation
point on a double-infinite vertical flat plate embedded in a fluid-saturated
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porous medium of constant ambient temperature T∞. Assume that the
external flow starts impulsively in motion from rest towards the plate with
a steady velocity ue(x) at time t = 0. The unsteady boundary layer equa-
tions governing this mixed convection flow are given by Pop and Ingham
(2001) as follows:

ux +vy =0, (1)

u=ue(x)+ gKβ

ν
(T −T∞), (2)

σ
∂T

∂t
+u

∂T

∂x
+v

∂T

∂y
=αm

∂2T

∂y2
, (3)

subject to the initial conditions and boundary conditions

t <0 :u(x, y)=v(x, y)=0, T (x, y)=T∞ for any x, y, (4)

t ≥0 :v(x,0)=0, T (x,0)=Tw −T∞, x ≥0, (5)

u(x,∞)=ue(x)= (Ue/L)x, x ≥0, (6)

where (x, y) denotes the Cartesian coordinates in vertical and horizontal
directions, respectively, with the positive y-axis pointing towards the porous
medium (external flow), t is the time, u and v are the velocity components
along x- and y-axes, T denotes the fluid temperature, L a characteristic
length, Ue a characteristic velocity, Tw is the temperature of the plate which
is assumed to vary linearly with the distance x along the plate, i.e.

Tw =T∞ + sT0(x/L),

T0 > 0 is a characteristic temperature, g the gravitational acceleration, K

the permeability of the porous medium, αm the effective thermal diffusivity
of the porous medium, β the thermal expansion coefficient, ν the kinematic
viscosity, σ the ratio of composite material heat capacity to convective fluid
heat capacity, and s =±1. Note that s =+1 corresponds to buoyancy assist-
ing flow and s =−1 corresponds to buoyancy opposing flow.

Recently, Nazar et al. (2004) gave numerical solutions for the unsteady
boundary layer problem by means of the Keller-Box method (1984), and
besides gained perturbation solutions for small times. For the steady-state
flows, they reported perturbation solutions for small and large values of the
mixed convection parameter. However, none of their analytic solutions are
valid for all values of the mixed convection parameter.

Liao (2003) developed an analytic method for strongly nonlinear prob-
lems, namely the homotopy analysis method (HAM), which has been suc-
cessfully applied to many nonlinear problems in science and engineering
(for example, see Arjab et al., 2003; Liao, 2003a, b, c; Liao and Cheung,
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2003; Hayat et al., 2004; Liao, 2004). The HAM is based on a traditional
concept of homotopy in topology. However, in the frame of the HAM,
the concept of homotopy is generalized by means of introducing an auxil-
iary parameter and an auxiliary function. One first connects selected initial
guesses and unknown solutions of a nonlinear problem by constructing
such a generalized homotopy with respect to an embedding parameter q ∈
[0,1]. Then, the solution can be expressed by a kind of Taylor series with
respect to the embedding parameter q at q =0, and each term of the solu-
tion series is governed by a linear equation. In this way, a nonlinear prob-
lem is transformed into an infinite number of linear problems. However,
different from perturbation techniques, such kind of transformation does
not depend on any small/large parameters at all. Besides, different from
all previous analytic techniques, the HAM provides us with a simple way
to control and adjust the convergence of the solution series, and also the
great freedom to choose a proper set of base functions. Furthermore, it log-
ically contains other nonperturbation techniques such as Lyapunov’s small
parameter method (Lyapunov, 1892), the δ-expansion method (Karmishin
et al., 1990), and Adomian’s decomposition method (Adomina, 1976), as
proved by Liao (2003a). So, the HAM is rather general. Currently, Liao (in
press) successfully applied the HAM to the unsteady boundary-layer flows
caused by an impulsively stretching plate and obtained analytic series solu-
tions valid for all times 0 ≤ t < +∞. In this paper, we further apply the
HAM to give analytic series solutions of the considered problem, which
are valid and accurate for all times and all values of the mixed convection
parameter.

2. Mathematical Description

Following Williams and Rhyne (1980), one introduces the similarity vari-
ables:

η= (Ue/Lαm)1/2yξ−1/2, ξ =1− exp(−τ), τ = (Ue/Lσ)t, (7)

u(x, y, t)= (Uex/L)f ′(η, ξ), (8)

v(x, y, t)=−(Ueαm/L)1/2ξ 1/2f (η, ξ), (9)

T (x, y, t)=T∞ + sT0(x/L)θ(η, ξ). (10)

Using above transformations, Equations (1)–(3) become

f ′ =1+λθ, (11)

θ ′′ + 1
2
η(1− ξ)θ ′ + ξ(f θ ′ −f ′θ)= ξ(1− ξ)

∂θ

∂ξ
(12)

for 0≤ ξ ≤1, and the corresponding boundary conditions (4) to (6) read
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f (0, ξ)=0, θ(0, ξ)=1, θ(η, ξ)→0 as η→∞ (13)

for 0≤ ξ ≤1, Here the mixed convection parameter λ is defined by

λ= s

(
Ra

Pe

)
(14)

where Ra = gKβT0L/(αmν) is the Rayleigh number and Pe = UeL/(αm)is
the Péclet number. Note that λ>0 (s =+1) corresponds to buoyancy assist-
ing flow, and λ<0 (s =−1) corresponds to buoyancy opposing flow. Thus,
Equations (11) and (12) can be combined to be

f ′′′ + 1
2
(1− ξ)ηf ′′ + ξ(ff ′′ +f ′ −f ′2)= ξ(1− ξ)

∂f ′

∂ξ
. (15)

subject to the boundary conditions

f (0, ξ)=0, f ′(0, ξ)=1+λ, f ′(∞, ξ)=1. (16)

The skin friction coefficient Cf , and the Nusselt number Nu, are defined by

Cf = 2µ(x/L)

ρu2
e(x)

∂u

∂y
|y=0,

Nu=− L

(Tw −T∞)

∂T

∂y
|y=0 (17)

Using similarity variables defined by (7) to (10), we get

Cf /(P r/P e)1/2=2ξ−1/2f ′′(0, ξ), (18)

Nu/(P rRe)1/2=−ξ−1/2θ ′(0, ξ)=−λ−1ξ−1/2f ′′(0, ξ), (19)

where Pr = ν/αm and Re = UeL/ν are Prandtl and Reynolds numbers,
respectively.

3. Known Solutions

3.1. initial flows

When ξ = 0, corresponding to τ = 0, Equation (15) becomes the Rayleigh-
type equation

F ′′′ + 1
2
ηF ′′ =0 (20)

subject to the boundary conditions

F(0)=0, F ′(0)=1+λ, F ′(∞)=1, (21)

where F(η)=f (η,0). The above equations has the exact solution
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F(η)=η+λ

[
η erfc(η/2)− 2√

π
exp(−η2/4)+ 2√

π

]
, (22)

where erfc(z) is the complementary error function defined by

erfc(z)= 2√
π

∫ ∞

η

exp(−z2)dz. (23)

Thus, the corresponding local skin friction coefficient and the Nusselt num-
ber in the initial unsteady flow are

Cf /(P r/Re)1/2 =− 2λ√
π

ξ−1/2, (24)

Nu/(P rRe)1/2 = 1√
π

ξ−1/2. (25)

3.2. steady-state flows

When ξ =1, corresponding to τ →∞, Equation (15) becomes

G′′′ +GG′′ +G′ −G′2 =0, (26)

subject to the boundary conditions

G(0)=0, G′(0)=1+λ, G′(∞)=1, (27)

where G(η)=f (η,1). Using perturbation method, Nazar et al. (2004) give
analytic approximations for small λ, i.e.

G′′(0)=−1.2533λ−0.4068λ2 +h.o.t. for |λ|�1, (28)

and approximations for large λ, i.e.

G′′(0)=λ3/2(−1−0.8160λ−1 +0.4605λ−2 +h.o.t.) for |λ|	1, (29)

respectively. However, neither (28) nor (29) are uniformly valid for all val-
ues of λ, as shown in Figure 3.

3.3. solution for small ξ and τ

By means of perturbation technique, it is assumed that a solution of Equa-
tions (15) and (16) for small values of ξ (�1) is of the form

f (η, ξ)=f0(η)+f1(η)ξ +f2(η)ξ 2 +h.o.t. (30)

Nazar et al. (2004) give the local Nusselt number

Nu/(P rRe)1/2=−λ−1ξ−1/2f ′′(0, ξ)

= 1√
π

[
ξ−1/2 −

(
4λ

3π
− 5+6λ

4

)
ξ 1/2 + h.o.t.

]
, (31)
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for small ξ and τ (�1) , where

ξ = τ − 1
2
τ 2 + 1

6
τ 3 +h.o.t. (32)

4. Homotopy Analysis Method

In this section we employ the HAM to give analytic solutions of Equa-
tions (15) and (16), which are uniformly valid for all times 0 ≤ τ < +∞
and all values of the parameter λ. In general, the temperature and velocity
of the fluid decays exponentially at infinity, i.e. f ′ → 1 exponentially (note
that a few of flows decay algebraically). So, the solution should contain the
term exp(−nη), n ≥ 1. Besides, ξ and η appear in Equation (15) and (16).
So, it is reasonable to assume that f (η, ξ) could be expressed by the fol-
lowing set of base functions

{ξmηk exp(−nη) | k ≥0,m≥0, n≥0} (33)

in the form

f (η, ξ)=a
0,0
0 +η+

+∞∑
k=0

+∞∑
i=0

+∞∑
j=1

a
i,j

k ξ kηi exp(−jη), (34)

where a
i,j

k are constant coefficients. The above expression provides us with
the so called Rule of Solution Expression (see Liao, 2003a), which plays an
important role in the frame of the HAM, as shown later.

In the frame of the HAM, one needs to choose a proper guess of the
solution as the lowest order of approximation. In general, a guess solu-
tion contains a few terms of the solution expression such as (34), and
besides should satisfy the boundary conditions, if possible. So, under the
Rule of Solution Expression (34) and using the boundary conditions (16),
it is straightforward to choose the initial guess

f0(η, ξ)=−λ exp(−η)+η+λ. (35)

Besides, in order to transform the nonlinear problem into an infinite num-
ber of linear problems, we need an auxiliary linear operator L. From Equa-
tion (15), L should be a second-order differential operator, i. e.

Lφ =φ′′′ +A2φ
′′ +A1φ

′ +A0φ,

where the prime denotes the differentiation with respect to η,A0,Al and A2

are constants to be determined soon. Clearly, the equation

Lφ =0

has the general solution
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φ =C1φ1 +C2φ2 +C3φ3,

where C1,C2 and C3 are any constants, which should be determined by the
boundary conditions (16). Obviously, φ1, φ2 and φ3 should be chosen under
the Rule of Solution Expression (34). As the first attempt, we can choose

φ1 =1, φ2 = exp(−η), φ3 = exp(−2η).

However, all of them vanishes at infinity, and thus the boundary condition
at infinity is satisfied automatically. Thus, only two constants of C1,C2 and
C3 can be determined by the two boundary conditions at η = 0. To avoid
this, we may choose

φ1 =1, φ2 = exp(−η), φ3 = exp(η).

To satisfy the boundary condition at infinity, C3 =0 must hold, and then C1

and C2 can be determined by the two boundary conditions at η=0. Enforc-
ing

L[1]=0, L[exp(−η)]=0, L[exp(η)]=0,

we have

A2 =0, A1 =−1, A0 =0.

Thus, we should choose the auxiliary linear operator

L[�(η, ξ ;q)]= ∂3�

∂η3
− ∂�

∂η
, (36)

where q ∈ [0,1] is an embedding parameter. Notice that the auxiliary linear
operator L has the property

L[C1 +C2 exp(−η)+C3 exp(η)]=0 (37)

for any constant coefficients C1,C2, and C3. From (15), we are led to define
a nonlinear operator

N [�(η, ξ ;q)]= ∂3�

∂η3
+ 1

2
(1− ξ)η

∂2�

∂η2
+ ξ

[
�

∂2�

∂η2
+ ∂�

∂η
−

(
∂�

∂η

)2
]

− ξ(1− ξ)
∂2�

∂η∂ξ
. (38)

By means of the HAM, we first introduce a nonzero auxiliary parameter -h
to construct the zeroth-order deformation equation

(1−q)L [�(η, ξ ;q)−f0(η, ξ)]= -hqN [�(η, ξ ;q)], (39)
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subject to the boundary conditions

�(0, ξ ;q)=0,
∂�(η, ξ ;q)

∂η

∣∣∣∣
η=0

=1+λ,
∂�(η, ξ ;q)

∂η

∣∣∣∣
η=+∞

=1, (40)

where q ∈ [0,1] is an embedding parameter. Obviously, when q =0. we have

�(η, ξ ;0)=f0(η, ξ). (41)

When q = 1, the zeroth-order deformation equations are equivalent to the
original ones (15) and (16), provided

�(η, ξ ;1)=f (η, ξ). (42)

Thus, as the embedding parameter q increases from 0 to 1, �(η, ξ ;q), gov-
erned by the zeroth-order deformation Equations (39) and (40), varies (or
deforms) from the initial guess f0(η, ξ) to the solution f (η, ξ) of the orig-
inal Equations (15) and (16). Assume that the auxiliary parameter -h is so
properly chosen that the Taylor series of �(η, ξ ;q) expanded with respect
to the embedding parameter q, i.e.

�(η, ξ ;q)=�(η, ξ ;0)+
+∞∑
n=1

fn(η, ξ)qn,

converges at q =1, where

fn(η, ξ)= 1
n!

∂n�(η, ξ ;q)

∂qn

∣∣∣∣
q=0

. (43)

Then, we have from (41) and (42) that

f (η, ξ)=f0(η, ξ)+
+∞∑
n=1

fn(η, ξ). (44)

The governing equations and boundary conditions for the unknown fn(η, ξ)

can be deduced from the zeroth-order deformation equation. For simplic-
ity, define the vectors

→
f n ={f0, f1, f2, . . . , fn}. (45)

Differentiating the zeroth-order deformation Equations (39) and (40) m

times with respect to the embedding parameter q, then dividing by m!, and
finally setting q =0, we have the mth-order deformation equations

L[fm(η, ξ)−χmfm−1(η, ξ)]= -hRm( 
fm−1, η, ξ), (46)
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subject to the boundary conditions

fm(0, ξ)=0,
∂fm(η, ξ)

∂η

∣∣∣∣
η=0

=0,
∂fm(η, ξ)

∂η

∣∣∣∣
η=+∞

=0, (47)

where

Rm(
→
f m−1, η, ξ)= 1

(m−1)!
∂m−1N [�(η, ξ ;q)]

∂qm−1

∣∣∣∣
q=0

= ∂3fm−1

∂η3
+ 1

2
(1− ξ)η

∂2fm−1

∂η2
− ξ(1− ξ)

∂2fm−1

∂η∂ξ
+

+ ξ
∂fm−1

∂η
+ ξ

m−1∑
i=0

[
fm−1−i

∂2fi

∂η2
− ∂fm−1−i

∂η

∂fi

∂η

]
(48)

and

χk =
{

0, k ≤1,

1, k >1.
(49)

It is easy to solve the above linear high-order deformation equations.
Let f ∗

m(η, ξ) denote a special solution of Equation (46). From (37), the cor-
responding general solution reads

fm(η, ξ)=f ∗
m(η, ξ)+C1 +C2 exp(−η)+C3 exp(η), (50)

where the coefficients Cl,C2,andC3 are determined by the boundary condi-
tions (47), i.e.

C3 =0, C2 = ∂f ∗
m(η, ξ)

∂η

∣∣∣∣
η=0

, C1 =−C2 −f ∗
m(0, ξ). (51)

In this way, we can get analytic results at high-order of approximations one
after the other in the order m = 1,2,3, . . . , by means of a symbolic soft-
ware such as Mathematica. Note that fm(η, ξ) fits into the Rule of Solution
Expression (34).

5. Result and Discussion

Liao (2003a) proved that, as long as a solution series given by the HAM
converges, it must be one of the solutions. Thus, it is important to ensure
that the solution series (44) converges for all times 0≤ ξ ≤1 and all values
of λ. Fortunately, there exists an auxiliary parameter -h which can adjust
and control the convergence of the solution series, as shown in our pre-
vious publications. For simplicity, we use the case of ξ = 0 as an exam-
ple. To choose a proper value of -h, we plot the so-called -h-curves, as
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-2

0
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6

λ = 10, 5, 2, 1, 0.1, −0.1, −1, −1.4

The 30th-order approximation of F"(0)

Figure 1. -h-curves of F ′′(0)=f ′′(0,0) at ξ =0 for different values of λ.

shown in Figure 1, where -h is regarded as a variable and F ′′(0)=f ′′(0,0)

a function -h. For given λ, there exists a parallel segment line which corre-
sponds to a region -h, for example, −0.5 < -h < −0.1 for λ = 10,−0.35 < -h <

−0.1 for λ=−1.4 (note that there is no solution for λ<−1.41175, see Na-
zar et al., 2004), and so on. Note that this parallel segment of -h-indepen-
dent solutions is identical with convergent series and thus is the unique
solution. Any value of -h in the parallel region guarantees the convergence
of the solution series, and the solutions outside of this segment repre-
sent divergent series. As an example, we can have -h = −1/4 for − 1 ≤ λ ≤
5, -h =−1/5 for λ=−1.4, and -h =−1/6 for λ=−10, respectively. And besides
one can employ the so-called homotopy-Padé technique (Liao and Cheung,
2003) to accelerate the convergence. The 30th-order approximation when
ξ =0 and -h=−1/5 and the corresponding [3,3] homotopy-Padé approxima-
tion of the velocity profile f ′(η,0) agree well with the exact solution (22)
in the whole time period 0≤η<+∞, as shown in Figure 2.

Similarly, for any values of given ξ and λ, we can find a proper value of
-h to ensure that the solution series converges. It is found that if the solution
series converges when ξ = 1 by means of a chosen value of -h, the solution
series converges for all times 0 ≤ ξ ≤ 1 by using the same value of -h. For
example, our solution series converge in the whole time period 0 ≤ ξ ≤ 1 for
−0.1 ≤λ≤ 5 by means of -h =−1/4, for λ= 1.4 by means of -h =−1/5, and
for λ = 10 by means of -h = −1/6, respectively. Figure 3 shows the steady
state behavior of G′′(0) of Equations (26) and (27) when ξ = 1. Different
from the perturbation solutions for small λ(λ�1) or large λ(λ	1) given by
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η
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(η

,0
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Line: exact solution when τ = 0
Circle: the 30th-order approximation
Filled delta: [3,3] Homotopy-Pade approximation

Figure 2. Comparison of f ′(η,0) of the exact solution (22) with the 30th-order
approximation when -h = −1/5, ξ = 0, and the [3,3] homotopy-Padé approximation.
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-40
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-20

-10

0

Delta: perturbation solution for small λ
Circle: perturbation solution for large λ
Solid: the 30th-order HAM solution for h= −1/6-

Figure 3. The skin friction G′′(0) = f ′′(0,1) with respect to λ for the steady-state
flow (ξ =1).
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λ = −1.4, −1, −0.1, 0.1, 1, 2, 5, 10

Line: HAM solution
Circle: numerical solution

Figure 4. Comparison of the numerical results with the analytic approximation of
the local Nusselt number in the whole time period 0≤ ξ ≤1.
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Line: HAM solution
Circle: numerical solution

Figure 5. Comparison of the numerical solution with the analytic approximation of
the local skin friction coefficient in the whole time period 0≤ ξ ≤1.

Nazar et al. (2004), the HAM solutions are uniformly valid for all val-
ues of λ as shown in Figure 3. Besides, our analytic solutions agree with
numerical results. The variations of the skin friction coefficient Cf and the
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local Nusselt number Nu in the whole dimensionless time region 0 ≤ ξ ≤ 1
for different values of λ are as shown in Figures 4 and 5, respectively. Note
that the 20th-order HAM approximation when λ = −1,−0.1,0.1,1,2,5,

and 10, the 25th-order HAM approximation when λ=−1.4 agree well with
the numerical ones. When -h=−1/3, even the 6th-order HAM result

f ′′(0,ξ)

=−0.5969568564λ−0.6574056152λξ −0.5504690967λ2ξ

−4.89725117×10−3λξ2 +0.1255702147λ2ξ2 +9.877559992×10−2λ3ξ2

+7.218105469×10−3λξ3 +2.110725218×10−2λ2ξ3 −1.9023293512×10−2λ3ξ3

−2.262642413×10−2λ4ξ3 +4.052856445×10−3λξ4 +4.299581885×10−3λ2ξ4

−7.698844961×10−3λ3ξ4 +2.427473049×10−5λ4ξ4 +4.564029788×10−3λ5ξ4

+1.439853516×10−3λξ5 +3.411321207×10−4λ2ξ5 −2.790427691×10−3λ3ξ5

+9.998905922×10−4λ4ξ5 +8.887303912×10−4λ5ξ5 −7.149633110×10−4λ6ξ5

+1.841088867×10−3λξ6 +2.047173735×10−4λ2ξ6 −2.487358884×10−3λ3ξ6

+4.243441233×10−4λ4ξ6 +5.060053602×10−4λ5ξ6 −3.408042986×10−4λ6ξ6

+8.4×10−5λ7ξ6, (52)

is valid in the range of −0.5≤λ≤5, as shown in Figure 6. Note that even
the 6th-order HAM solutions agree well with the numerical one for all time
period 0 ≤ τ <+∞, while the perturbation solution is valid only for small

N
u/

(P
rR

e)
1/

2

0 1 2 3 4
0

1

2

3

4

5

Solid: numerical solution
Line: the 6th-order HAM approximation
Dashed: perturbation small τ solution

λ = −0.1, 0.1, 1, 2, 5

τ

Figure 6. Comparison of the numerical results with the 6th-order approximation of
the local Nusselt number. The dashed lines denote the perturbation results (31) for
small time variables τ .
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time variables and becomes rather bad for large λ such as λ= 1,2 and 5,
as shown in Figure 6. Thus, by means of the proposed approach, we can
obtain accurate analytic solutions uniformly valid for all times 0≤ τ <+∞
and all possible values of λ.

6. Conclusion

In this paper, we solve the unsteady mixed convection flow near the stagna-
tion point on a heated vertical flat plate embedded in a Darcian fluid-satu-
rated porous medium by means of an analytic technique, namely the HAM.
Unlike previous perturbation results, our analytic series solutions are accu-
rate and uniformly valid for all dimensionless times and for all possible values
of mixed convection parameter. Besides, all of our analytic solutions agree
well with numerical results. Even the lower-order expression (52) of f ′′(0, ξ)

is accurate and valid for all time in some region of λ. To the best of our
knowledge, such kind of analytic solutions has never been reported for the
considered problems. Furthermore, the study presented also provides us with
a new analytic approach to investigate related unsteady problems.
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