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Abstract

A new kind of analytic technique, namely the homotopy analysis method, is em-

ployed to give an explicit analytic solution of the Thomas–Fermi equation and the

related recurrence formulae of constant coefficients. This solution can be regarded as the

definition of the exact solution of the Thomas–Fermi equation.
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1. Introduction

Consider a differential equation used to calculate the electrostatic potential

in the Thomas–Fermi atom model [1,2], called the Thomas–Fermi equation
E-m

0096-3

doi:10.
u00ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
u3ðxÞ
x

r
ð1Þ
with boundary conditions
uð0Þ ¼ 1; uðþ1Þ ¼ 0 ð2Þ
in the common case. Thomas–Fermi atom model views the electrons in an atom

as a gas and derives atomic structure in terms of the electrostatic potential and
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the electron density in the ground state. The above equation describes the

spherically symmetric charge distribution about a many electron atom.
The analytic approximations of the Thomas–Fermi equations were pro-

posed by some different techniques such as the variational approach [3,4], the

d-expansion method [5–7], the decomposition method [8–11] and so on [12–17].

However, to the best of our knowledge, there does not exist an elegant, simple

and explicit analytic solution to the Thomas–Fermi equation.

In this paper the analytic approximate technique for nonlinear prob-

lems, namely the homotopy analysis method [18–26], is employed to give

an explicit analytic solution of the Thomas–Fermi equation. Unlike pertur-
bation techniques [27,28], the artificial small parameter method [29], the d-
expansion method [30] and the decomposition method [31], the homotopy

analysis method itself provides us with a convenient way to control the con-

vergence of approximation series and adjust convergence regions when neces-

sary. Briefly speaking, the homotopy analysis method has the following

advantages:

1. it is valid even if a given nonlinear problem does not contain any small/large
parameters at all;

2. it itself can provide us with a convenient way to control the convergence of

approximation series and adjust convergence regions when necessary;

3. it can be employed to efficiently approximate a nonlinear problem by choos-

ing different sets of base functions.

In this paper an explicit analytic solution of the Thomas–Fermi equation

and the related recurrence formulae of constant coefficients are given.
2. Mathematical formulations

Rewrite the original equation (1) as
x½u00ðxÞ�2 	 u3ðxÞ ¼ 0: ð3Þ
Note that Eq. (3) contains neither linear terms nor small or large parameters.

The essence to approximate a problem is to represent its solution by means

of a complete set of base functions. Considering the boundary conditions (2)

and the physical meaning of uðxÞ, it is straightforward that uðxÞ should decrease

from 1 to 0 as x increase from 0 to 1. Thus, it is reasonable to choose the set of
base functions
ð1f þ xÞ	mjmP 1g ð4Þ
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to represent uðxÞ, i.e.
uðxÞ ¼
Xþ1

m¼1

cmð1þ xÞ	m
; ð5Þ
where cm is coefficient. This provides us with the Rule of Solution Expression.
Under the Rule of Solution Expression described by (5) and due to the

boundary conditions (2), it is straightforward to choose
u0ðxÞ ¼ ð1þ xÞ	1 ð6Þ
as the initial guess of uðxÞ. Note that the original equation (1) is a nonlinear

second-order differential equation. So, under the Rule of Solution Expression,

one can choose the auxiliary linear operator
L½/ðx; pÞ� ¼ ð1þ xÞ
2

o2/ðx; pÞ
ox2

þ o/ðx; pÞ
ox

ð7Þ
such that
L½C1ð1þ xÞ	1 þ C2� ¼ 0 ð8Þ
holds for any constant coefficients C1 and C2.

Based on Eq. (3), the following nonlinear operator can be defined
N½/ðx; pÞ� ¼ x
o2/ðx; pÞ

ox2

� �2
	 /3ðx; pÞ: ð9Þ
Then, one can construct several homotopies as follows:
H½/ðx; pÞ; �h; p� ¼ ð1	 pÞL /ðx; pÞ½ 	 u0ðxÞ� 	 �hpN½/ðx; pÞ�; ð10Þ
Hb

0½/ð0; pÞ; p� ¼ /ð0; pÞ 	 1; ð11Þ

Hb
1½/ðþ1; pÞ; p� ¼ /ðþ1; pÞ; ð12Þ
where �h is a non-zero auxiliary parameter. Setting
H½/ðx; pÞ; �h; p� ¼ 0; Hb
0½/ð0; pÞ; p� ¼ 0; Hb

1½/ðþ1; pÞ; p�;
one has a family of equations
ð1	 pÞL /ðx; pÞ½ 	 u0ðxÞ� ¼ �hpN½/ðx; pÞ�; xP 0; p 2 ½0; 1�; ð13Þ
with boundary conditions
/ð0; pÞ ¼ 1; /ðþ1; pÞ ¼ 0: ð14Þ
Note that the homotopyH½/ðx; pÞ; �h; p� contains the auxiliary parameter �h and
besides one has great freedom to choose a proper value for it. Note also that

when �h ¼ 	1 the homotopy (10) is constructed in the traditional way. So, the

homotopy (10) is more general than traditional ones.
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Due to (13), (14) and the definition (6) of u0ðxÞ, it holds when p ¼ 0 that
/ðx; 0Þ ¼ u0ðxÞ: ð15Þ

When p ¼ 1, Eqs. (13) and (14) are the same as the original ones (3) and (2),

provided
/ðx; 1Þ ¼ uðxÞ: ð16Þ
Thus, as p increases from 0 to 1, /ðx; pÞ varies from the initial guess u0ðxÞ to the

exact solution uðxÞ of Eqs. (3) and (2). This kind of variation is called defor-
mation in topology. So, Eqs. (13) and (14) are called the zero-order deformation

equations.

Due to (15), /ðx; pÞ can be expressed in the Maclaurin series
/ðx; pÞ � u0ðxÞ þ
Xþ1

k¼1

ukðxÞpk; ð17Þ
where
ukðxÞ ¼
1

k!
ok/ðx; pÞ

opk

����
p¼0

: ð18Þ
Note that /ðx; pÞ contains the auxiliary parameter �h. Assuming that �h is
properly chosen such that the Maclaurin series (17) converges when p ¼ 1, one

has due to (16) that
uðxÞ ¼ u0ðxÞ þ
Xþ1

k¼1

ukðxÞ: ð19Þ
So, it is the auxiliary parameter �h that provides us with a convenient way to

control the convergence of approximation series and adjust convergence re-

gions when necessary.

The governing equation and boundary conditions of ukðxÞ (k ¼ 1; 2; 3; . . .)
are derived as follows. Differentiating k times the zero-order deformation Eqs.

(13) and (14) with respect to p and then setting p ¼ 0 and finally dividing them

by k!, one has the so-called kth-order deformation equations
L ukðxÞ½ 	 vkuk	1ðxÞ� ¼ �hRkðxÞ; ð20Þ
with boundary conditions
ukð0Þ ¼ 0; ukðþ1Þ ¼ 0; ð21Þ
where
RkðxÞ ¼
Xk	1

j¼0

xu00j ðxÞu00k	1	jðxÞ
"

	 uk	1	jðxÞ
Xj

i¼0

uiðxÞuj	iðxÞ
#

ð22Þ
and
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vk ¼
0; k6 1;
1; k > 1:

	
ð23Þ
It should be emphasized that ukðxÞ (kP 1) is governed by the linear equation
(20) with the linear boundary conditions (21), which can be easily solved

by symbolic computation software such as Maple and Mathematica. Thus,

through (19), the homotopy analysis method transfers the original nonlinear

problem, governed by the fully nonlinear equation (3), to an infinite number of

linear sub-problems, governed by (20) and (21). Note that such a kind of

transformation needs not any small or large parameters at all.

Let u�kðxÞ denote a special solution of equation
L½u�kðxÞ� ¼ �hRkðxÞ:
Then, due to the property (8), the general solution of Eq. (20) is
ukðxÞ ¼ vkuk	1ðxÞ þ u�kðxÞ þ C1ð1þ xÞ	1 þ C2; ð24Þ
where the coefficients C1 and C2 are determined by the boundary conditions

(21).

In this way one can successively solve the kth-order deformation equations

(20) and (21). It is found that ukðxÞ can be expressed by
ukðxÞ ¼
X4kþ1

n¼1

ak;nð1þ xÞ	n
; ð25Þ
where ak;nð�hÞ are coefficients. Substituting the above expression into the kth-

order deformation equations (20) and (21), one has the following recurrence

formulae:
ak;n ¼ vkð1	 vn	4kþ4Þak	1;n

þ
2�h vn	2bk	1;n	2 	 vn	3bk	1;n	3 	 ck	1;nþ1


 �
nðn	 1Þ ; ð26Þ
where kP 1, 26 n6 4k þ 1, the coefficient vk is defined by (23) and
bm;j ¼
Xm
k¼0

Xmin j	1;4kþ1f g

n¼max 1;jþ4k	4m	1f g
nðnþ 1Þðj	 nÞðj	 nþ 1Þak;nam	k;j	n; ð27Þ

cm;j ¼
Xm
k¼0

Xmin j	1;4kþ2f g

n¼max 2;jþ4k	4m	1f g
dk;nam	k;j	n; ð28Þ

dm;j ¼
Xm
k¼0

Xmin j	1;4kþ1f g

n¼max 1;jþ4k	4m	1f g
ak;nam	k;j	n; ð29Þ
respectively. Besides, the coefficient ak;1 is given by
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ak;1 ¼ 	
X4kþ1

n¼2

ak;n: ð30Þ
Due to the definition (6) of u0ðxÞ, one has the first coefficient
a0;1 ¼ 1:
Thus, using the foregoing recurrence formulas and the known first coefficient
a0;1 ¼ 1, all other coefficients ak;n can be calculated successively. This provides

us with an explicit analytic solution of the Thomas–Fermi equation
uðxÞ ¼
Xþ1

k¼0

X4kþ1

n¼1

ak;nð1þ xÞ	n
: ð31Þ
The corresponding mth-order approximation is
uðxÞ �
Xm
k¼0

X4kþ1

n¼1

ak;nð1þ xÞ	n
: ð32Þ
Note that this analytic solution contains the auxiliary parameter �h, which can

be employed to control the convergence of approximations and adjust con-

vergence regions when necessary. Note that �h ¼ 	1 corresponds to the tradi-

tional way to construct a homotopy. However, it is found that when �h ¼ 	1

the series (31) diverges in the whole region 0 < x < þ1. Thus, if one constructs

the homotopy (10) in the traditional way one cannot get a convergent ana-

lytical result. Fortunately, it is found that when 	1=26 �h < 0 the series (31)

converges in the whole region 06 x < þ1. When �h ¼ 	1=2 the analytic results
at the 40th and 60th-order approximations agree quite well, as shown in Fig. 1.

This illustrates that the auxiliary parameter �h can indeed control the conver-

gence of approximations and adjust convergence regions when necessary. It

should be emphasized that the proposed approach fails if �h were not intro-

duced. That is the essential reason why the auxiliary parameter �h is introduced

in the homotopy (10) and in the zero-order deformation equation (13). So, the

auxiliary parameter �h plays a very important role in the homotopy analysis

method.
Theorem 1 (Convergence theorem). If the series
u0ðxÞ þ
Xþ1

0

ukðxÞ
is convergent, where ukðxÞ is governed by Eqs. (20) and (21) under the definitions
(7), (22) and (23), it must be an exact solution of the Thomas–Fermi equation.



Fig. 1. The analytic result of the Thomas–Fermi equation when �h ¼ 	1=2. Solid line: 60th-order

approximation; symbols: 40th-order approximation.
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Proof. Write
sðxÞ ¼ u0ðxÞ þ
Xþ1

k¼1

ukðxÞ:
Owing to the convergence of the above series, it is necessary that
lim
m!þ1

umðxÞ ¼ 0:
Due to (20), the definitions (7) and (23) and above expression, one has
�h
Xþ1

k¼1

RkðxÞ ¼ lim
m!þ1

Xm
k¼1

L½ukðxÞ 	 vkuk	1ðxÞ�

¼ L lim
m!þ1

Xm
k¼1

½ukðxÞ
(

	 vkuk	1ðxÞ�
)

¼ L lim
m!þ1

umðxÞ
� �

¼ 0;
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which gives due to �h 6¼ 0 that
Xþ1

k¼1

RkðxÞ ¼ 0:
Then, due to the definition (22) and above expression, one has
Xþ1

k¼1

RkðxÞ ¼
Xþ1

k¼1

Xk	1

j¼0

xu00j ðxÞu00k	1	jðxÞ
"

	 uk	1	jðxÞ
Xj

i¼0

uiðxÞuj	iðxÞ
#

¼ x
Xþ1

k¼0

u00kðxÞ
" #2

	
Xþ1

k¼0

ukðxÞ
" #3

¼ x
d2sðxÞ
dx2

� �2
	 s3ðxÞ

¼ 0:
Besides, due to (21) and definition (6) of u0ðxÞ, one has
sð0Þ ¼ 1; sðþ1Þ ¼ 0:
So, sðxÞ satisfies the Thomas–Fermi equation (3) and the corresponding
boundary conditions (2) and therefore is its exact solution. This ends the

proof. �

When �h ¼ 	1=2, the analytic result at the 40th-order of approximation

agrees well with that at the 60th-order of approximation, as shown in Fig. 1.

So, it is obvious that the series (31) converges when �h ¼ 	1=2. Then, due to

above convergence theorem, it must be the exact solution of the Thomas–Fermi

equation. This is indeed true. The analytic approximation at the 60th-order of
approximation agrees well with the numerical result, as shown in Fig. 2.

The energy of a neutral atom in the Thomas–Fermi model is determined by
E ¼ 6

7

4p
3

� �2=3

Z7=3u0ð0Þ;
where Z is the unclear charge. The initial slope u0ð0Þ of the Thomas–Fermi

equation is provided by Kobayashi [32] as
u0ð0Þ ¼ 	1:588071: ð33Þ
The approximations of the initial slope u0ð0Þ given by (32) are listed in the

Table 1. Obviously, the error decreases as the order of approximation in-

creases.



Fig. 2. Comparison of the analytic result of the Thomas–Fermi equation with the numerical result.

Solid line: analytic result at the 60th-order approximation when �h ¼ 	1=2; symbols: numerical

result.

Table 1

Approximations of the initial slope u0ð0Þ given by (31) when �h ¼ 	1=2 and the corresponding errors

to Kobayashi�s result

Order of approximation u0ð0Þ Error (%)

10 )1.50014 5.54

20 )1.54093 2.97

30 )1.55595 2.02

40 )1.56373 1.53

50 )1.56848 1.23

60 )1.57168 1.03

70 )1.57399 1.01

80 )1.57572 0.78

90 )1.57708 0.69

100 )1.57816 0.62
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Due to (16) it holds
u0ð0Þ ¼ o/ðx; pÞ
ox

����
p¼1; x¼0

:



Table 2

Approximations of the initial slope u0ð0Þ given by diagonal Pad�ee approximants of (31) when

�h ¼ 	1=2 and the corresponding errors to Kobayashi�s result

Pad�ee approximants u0ð0Þ Error (%)

[10/10] )1.51508 4.6

[20/20] )1.58281 3:3� 10	1

[30/30] )1.58606 1:3� 10	1

[40/40] )1.58668 8:8� 10	2

[45/45] )1.58702 6:6� 10	2

[50/50] )1.58712 6:0� 10	2

Table 3

Approximations of u00ð0Þ given by (32) when �h ¼ 	1=2

Order of approximation u00ð0Þ
10 13.0003

20 23.0819

30 33.1119

40 43.1275

50 53.1370

60 63.1434

70 73.1480

80 83.1514

90 93.1542

100 103.1560
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Due to (17), one has
o/ðx; pÞ
ox

����
x¼0

¼ u00ð0Þ þ
Xþ1

k¼1

u0kð0Þpk: ð34Þ
Employing the [m=m] diagonal Pad�ee approximants [33,34] to the above power

series of p and then setting p ¼ 1, one gains more accurate approximations of

the initial slope u0ð0Þ, as shown in Table 2. Note that the error decreases with

the increase of the degree of the Pad�ee approximants.
Due to Eq. (1), it holds u00ð0Þ ! þ1 as x ! 0. The approximations of u00ð0Þ

given by (32) when �h ¼ 	1=2 are listed in the Table 3. Obviously, u00ð0Þ of the
analytic solution (31) indeed tends to infinity.
3. Conclusion and discussions

The homotopy analysis method has some advantages over other analytic
approaches such as perturbation methods, artificial parameter method, the d-
expansion method, the decomposition method and so on. First, the homotopy

analysis method does not depend upon any small parameters so that one can
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employ it to the fully nonlinear equation (3). Besides, the homotopy analysis

method provides us with freedom to choose the initial guess (6) and the aux-
iliary linear operator (7) so that one can represent the solution of the Thomas–

Fermi equation by the set of base functions (5). Finally but most importantly,

the homotopy analysis method provides us with a convenient way to control

the convergence of approximation series and adjust convergence regions when

necessary, which is a fundamental qualitative difference in analysis between the

homotopy analysis method and all other reported analytic techniques.

Note that �h ¼ 	1 corresponds to the traditional way to construct a ho-

motopy. It should be emphasized that the series (31) is divergent when �h ¼ 	1
but convergent when 	1=26 �h < 0. So, the auxiliary parameter �h plays a very

important role in the homotopy analysis method.

To the best of our knowledge it is the first time such an elegant and explicit

analytic solution of the Thomas–Fermi equation is given. By means of the re-

currence formulas (26)–(30), it is quite easy to gain high-order approximations

of the Thomas–Fermi equations. Note that a lot of fundamental functions

are defined by such kind of recurrence formulas. So, the series (31) (when

	1=26 �h < 0) can be regarded as one definition of the exact solution of the
Thomas–Fermi equations. This illustrates the validity and potential of the ho-

motopy analysis method for nonlinear problems in the science and engineering.
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