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Abstract

In this paper, the unsteady boundary-layer flows caused by an impulsively stretching flat plate is solved

by means of an analytic approach. Unlike perturbation techniques, this approach gives accurate analytic

approximations uniformly valid for all dimensionless time. Besides, a simple but accurate analytic formula
for the local skin friction is given, which agrees well with numerical results and thus is useful in the related

industries. To the best of our knowledge, this type of analytic solutions has been never reported. Further-

more, the proposed analytic approach has general meaning and therefore may be applied in the similar way

to other unsteady boundary-layer flows to get accurate analytic solutions valid for all time.

� 2004 Elsevier B.V. All rights reserved.

PACS: 47.15.Cb; 46.15.Ff
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1. Introduction

The investigation of the boundary-layer flows of an incompressible fluid over a stretching sur-
face has many important applications in engineering, such as the aerodynamic extrusion of plastic
sheets, the boundary layer along a liquid film condensation process, the cooling process of metal-
lic plate in a cooling bath, and in the glass and polymer industries. The investigation were made by
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many researchers, including Sakiadis [1], Crane [2], Banks [3], Banks and Zaturska [4], Grubka
and Bobba [5], Ali [6] for the impermeable plate, and Erickson et al. [7], Gupta and Gupta [8],
Chen and Char [9], Chaudhary et al. [10], Elbashbeshy [11], Magyari and Keller [12] for the per-
meable plate. The unsteady boundary layers due to an impulsively started flat plate were consid-
ered by some researchers [13–18]. However, the work on the unsteady boundary-layer flows due to
an impulsively stretching surface in a viscous fluid [19,20,18,21] is relatively little. Currently, Na-
zar et al. [21] solved the unsteady boundary-layer flow due to an impulsively stretching surface in a
rotating fluid by means of a transformation found by Williams and Rhyne [22] and the so-called
Keller-box numerical method, and they obtained a first-order perturbation approximation.

It seems hard to obtain analytic solutions of unsteady boundary-layer flows, which are valid for
all time. Perturbation techniques are applied by many researchers, but the corresponding analytic
solutions are valid only for small time [16,18,21]. To the best of our knowledge, no one has re-
ported any analytic solutions of unsteady boundary-layer flows over a semi-infinite flat plate,
which are valid and accurate for all time.

Currently, an analytical method for strongly nonlinear problems, namely the Homotopy Anal-
ysis Method [23], has been developed and successfully applied to many kinds of nonlinear prob-
lems in science and engineering [24–33]. In this paper, the Homotopy Analysis Method is
employed to give an analytic solution of the unsteady boundary-layer flows caused by a impul-
sively stretching plate, which is valid and accurate for all time.
2. Mathematical description

Consider an unsteady boundary layer developed by an impulsively stretching plate in a con-
stant pressure viscous flow, governed by
ou
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; ð1Þ
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¼ 0; ð2Þ
subject to the boundary conditions
t P 0 : u ¼ ax; v ¼ 0 at y ¼ 0; ð3Þ

u ! 0 as y ! þ1 ð4Þ

where a > 0, and the initial conditions
t ¼ 0 : u ¼ v ¼ 0 at all points ðx; yÞ: ð5Þ
Let w denote the stream function. Following Seshadri et al. [18] and Nazar et al. [21], we use Wil-
liams and Rhyne�s similarity transformation [22]
w ¼
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The original equations become
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subject to the boundary conditions
f ð0; nÞ ¼ 0;
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g¼0
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¼ 0: ð8Þ
When n = 0, corresponding to s = 0, (7) becomes the Rayleigh type of equation
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The above equation has the exact solution
f ðg; 0Þ ¼ gerfcðg=2Þ þ 2ffiffiffi
p

p 1� expð�g2=4Þ
� �

; ð11Þ
where erfc(g) is the error function defined by
erfcðgÞ ¼ 2ffiffiffi
p

p
Z þ1

g
expð�z2Þdz:
When n = 1, corresponding to s ! +1, we have from Eq. (7) that
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f ð0; 1Þ ¼ 0;
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The above equation has the exact solution
f ðg; 1Þ ¼ 1� expð�gÞ: ð14Þ

So, as n increases from 0 to 1, f(g,n) varies from the initial solution (11) to the steady solution (14).
Note that, although f 0(+1,n) ! 0 exponentially for all n, where the prime denotes the differenti-
ation with respect to g, f 0(+1, 0) of the initial solution (11) tends to 0 much more quickly than
f 0(+1, 1) of the steady solution (14). So, mathematically, the initial solution (11) is different in
essence from the steady one (14). This might be the reason why it is so hard to give an accurate
analytic solution uniformly valid for all time 0 6 s < +1.
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When n = 0 and n = 1, we have
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and
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¼ �1; ð16Þ
respectively. The skin friction coefficient is given by
cxf ðx; nÞ ¼ nRexð Þ�1=2f 00ð0; nÞ; 0 6 n 6 1; ð17Þ
where Rex = ax2/m is the local Reynolds number.
3. Perturbation solution

Regard n as small parameter. Like Seshadri et al. [18] and Nazar et al. [21], we have the per-
turbation expression
f ðg; nÞ ¼ g0ðgÞ þ g1ðgÞnþ g2ðgÞn2 þ � � � :
Substituting it into Eqs. (7) and (8), we obtain the zero-order equation
g0000 ðgÞ þ
g
2
g000ðgÞ ¼ 0; g0ð0Þ ¼ 0; g00ð0Þ ¼ 1; g00ðþ1Þ ¼ 0; ð18Þ
and the kth-order (k P 1) equation
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subject to the boundary conditions
gkð0Þ ¼ g0kð0Þ ¼ g0kðþ1Þ ¼ 0: ð20Þ

The solution of the Rayleigh type of equation (18) is
g0ðgÞ ¼ f ðg; 0Þ ¼ gerfcðg=2Þ þ 2ffiffiffi
p

p 1� expð�g2=4Þ
� �

:

Substituting it into Eqs. (19) and (20), we obtain
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Obviously, gk(g) can be expressed by the following set of base functions
gm exp � ng2

4

� �
erfcj

g
2

	 
� ����m P 0; n P 0; j P 0

�
: ð22Þ
The base functions contain the error function erfc(g/2) and its powers. Note that these base func-
tions appear on the right-hand side of the high-order perturbation equation (19). So, although
(19) is a linear differential equation, it is rather difficult to solve when k P 2. Like Seshadri et
al. [18] and Nazar et al. [21], we can obtain only the first-order perturbation approximation. Note
that, the steady solution (14) when n = 1 is simply an exponent function. The error function erfc(g/
2), which appears in the initial solution (11) when n = 0, seems too complicated and also unnec-
essary for the unsteady solution (14). Because only the first-order approximation can be obtained,
it is unclear whether or not the simple steady solution (14) can be expressed by the above set of
base functions that contain the error function and its powers.

The corresponding skin friction coefficient at the first-order of perturbation approximation is
Cx
f ðx; nÞ � � 1ffiffiffiffiffiffiffiffiffiffiffiffi

pnRex
p 1þ 5
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� 4

3p

� �
n

� �
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4. Homotopy analytic solution

In this section we employ the homotopy analysis method to solve Eqs. (7) and (8). According to
previous discussions, we should avoid the appearance of the error function and its powers so that
high-order approximations can be obtained. From (7), (8), (11), and (14), it is reasonable to
assume that f(g,n) could be expressed by the following set of base functions
nkgm expð�ngÞjk P 0; m P 0; n P 0
 �

ð24Þ

such that
f ðg; nÞ ¼ a0;00 þ
Xþ1

k¼0

Xþ1

m¼0

Xþ1

n¼1

am;nk nkgm expð�ngÞ; ð25Þ
where am;nk is a coefficient. It provides us with the so-called Rule of Solution Expression (see
[23,24]). From (7), (8), and (25), it is straightforward to choose the initial approximation
f0ðg; nÞ ¼ 1� expð�gÞ; ð26Þ

which is exactly the same as the steady-state solution f(g, 1), and the auxiliary linear operator
L½/ðg; n; qÞ� ¼ o3/
og3

� o/
og

; ð27Þ
which has the property
L C1 þ C2 expð�gÞ þ C3 expðgÞ½ � ¼ 0: ð28Þ

From (7), we define the nonlinear operator
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Let �h denote a nonzero auxiliary parameter. We construct the so-called zero-order deformation
equation (see [23,24])
ð1� qÞL /ðg; n; qÞ � f0ðg; nÞ½ � ¼ q�hN /ðg; n; qÞ½ �; ð30Þ
subject to the boundary conditions
/ð0; n; qÞ ¼ 0;
o/ðg; n; qÞ

og

����
g¼0

¼ 1;
o/ðg; n; qÞ

og

����
g¼þ1

¼ 0; ð31Þ
where q 2 [0,1] is an embedding parameter. Obviously, when q = 0 and q = 1, we have
/ðg; n; 0Þ ¼ f0ðg; nÞ ð32Þ
and
/ðg; n; 1Þ ¼ f ðg; nÞ; ð33Þ
respectively. Thus, as q increases from 0 to 1, /(g,n;q) varies from the initial approximation
f0(g,n) to the solution f(g,n) of the original equations (7) and (8). Assume that the auxiliary
parameter �h is so properly chosen that the Taylor series of /(g,n;q) expanded with respect to
the embedding parameter, i.e.
/ðg; n; qÞ ¼ /ðg; n; 0Þ þ
Xþ1

n¼1

fnðg; nÞqn; ð34Þ
where
fnðg; nÞ ¼
1

n!
o
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oqn

����
q¼0

; ð35Þ
converges at q = 1. Then, we have from (32) and (33) that
f ðg; nÞ ¼ f0ðg; nÞ þ
Xþ1

n¼1

fnðg; nÞ: ð36Þ
Write
~f n ¼ f0; f1; f2; . . . ; fnf g:

Differentiating the zero-order deformation equations (30) and (31) m times with respect to q, then
dividing by m!, and finally setting q = 0, we have the mth-order deformation equations (see
[23,24])
L½fmðg; nÞ � vmfm�1ðg; nÞ� ¼ �hRmð~f m�1; g; nÞ; ð37Þ

subject to the boundary conditions
fmð0; nÞ ¼ 0;
ofmðg; nÞ

og
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g¼0

¼ 0;
ofmðg; nÞ

og

����
g¼þ1

¼ 0; ð38Þ
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where
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Fig. 1. The �h-curve of f00(0) when n = 0.
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and
Table
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�h = �
vn ¼
1; n > 1;

0; n ¼ 1:

�
ð40Þ
Let f �
mðg; nÞ denote a special solution of Eq. (37). From (28), its general solution reads
fmðg; nÞ ¼ f �
mðg; nÞ þ C1 þ C2 expð�gÞ þ C3 expðgÞ;
where the coefficients C1,C2, and C2 are determined by the boundary conditions (38). In this way,
it is easy to solve the linear equations (37) and (38) successively.
2

,m] homotopy-Padè approximations of f00(0,0)
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Circle: 20th-order approximation
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. The comparison of f 0(g, 0) of the exact solution (11) when n = 0 with the 20th-order approximation when

1/4 and the [3,3] homotopy-Padé approximation.
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Note that, unlike the previous perturbation approach, the special function erfc(g/2) does not
appear in the high-order deformation equation (37). So, we can easily obtain results at rather
high-order of approximations, especially by means of the symbolic computation software such
as Mathematica. In this way, we can obtain accurate analytic approximations uniformly valid
for all time s, as described below.
5. Result analysis

Liao [23] proved that, as long as a solution series given by the homotopy analysis method con-
verges, it must be one of solutions. So, it is important to ensure that the solution series (36) is con-
vergent. Note that the series (36) contains an auxiliary parameter �h. Obviously, the convergence of
the series (36) is determined by this auxiliary parameter. Because the initial approximation (26) is
exactly the same as the steady solution (14), it holds when n = 1 that
fmðg; 1Þ ¼ 0; m ¼ 1; 2; 3; . . . :
Thus, when n = 1, the solution series (36) is convergent for all �h. However, when n51 such as
n = 0, we had to investigate the influence of �h on the convergence of the solution series (36).
To do so, we first consider f00(0,n), which relates the local skin friction coefficient Cx

f and thus
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Solidline: 30th-order approximation
Symbols: 20th-order approximation

Fig. 3. The approximations of f00(0,n) for 0 6 n 6 1 when �h = �1/4.
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has an important physical meaning. Regarding �h as an unknown parameter, we can plot curves of
f00(0,n) via �h for different n, called the �h-curves of f00(0,n). For example, the �h-curve of f00(0,n) at
n = 0 is as shown in Fig. 1. This �h-curve has a parallel line segment that corresponds to a region
of �0.35 < �h < �0.15, denoted by R�h. The series of f

00(0,n) converges, if �h is chosen in this region.
Indeed, the convergent result of f00(0,n) is obtained when �h = �1/4 and n = 0, as shown in Table 1.
It agrees well with the exact result f 00ð0; 0Þ ¼ �1=

ffiffiffi
p

p
� �0:56419. Besides, the convergence can be

greatly accelerated by means of the so-called Homotopy-Padé method [23], as shown in Table 2.
Furthermore, it is found that, when �h = �1/4 and n = 0, the 20th-order approximation and [3,3]
homotopy-Padé approximation of the velocity profile f 0(g, 0) agree well with the exact solution
(11) in the whole region 0 6 g < +1, as shown in Fig. 2. Therefore, the initial solution (11),
which contains exp(�g2/4) and the error function erfc(g/2), can be expressed by the set of the base
functions (24).

Similarly, given n 2 [0,1], we can find a proper value of �h to ensure that the solution series (36)
is convergent. It is found that, when �h = �1/4, the solution series (36) is convergent for any a value
of n 2 [0,1] in the whole region 0 6 g < +1, as shown in Figs. 3 and 4. Note that, the velocity
profile varies smoothly as s increase from 0 to 1, as shown in Fig. 4. When �h = �1/4, we have
the 30th-order approximation
η ξ1/2

f’
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,ξ
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0.3
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1

at = 0.01, 0.1,0.25,0.5,1,10

Fig. 4. The velocity profile f 0(g,n) at different dimensionless time s = a t when �h = �1/4.
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f 00ð0; nÞ ¼ �0:5643747892� 0:4653303619nþ 2:998049008� 10�2n2 � 2:518392990� 10�3n3

� 2:561860658� 10�5n4 � 2:531901893� 10�5n5 þ 3:073353805� 10�5n6

þ 5:063224875� 10�5n7 þ 5:780083670� 10�5n8 � 3:019750875� 10�4n9

þ 0:2746188078n10 � 48:017634463n11 þ 3:4358227736� 103n12

� 1:2769915485� 105n13 þ 2:8257114566� 106n14 � 4:0636817506� 107n15

� 6:1471279622� 1010n19 þ 1:9058081506� 1011n20 � 4:5980815420� 1011n21

þ 8:6766946108� 1011n22 � 1:2809186178� 1012n23 þ 1:4720293398� 1012n24

� 1:3019682527� 1012n25 þ 8:6859786813� 1011n26 � 4:2255442112� 1011n27

þ 1:4139635601� 1011n28 � 2:9087215325� 1010n29 þ 2:7723411925� 109n30;

ð41Þ
which agrees well with the numerical result, as shown in Fig. 3. The corresponding local skin fric-
tion at the dimensionless time s 2 [0, +1) agrees with the numerical result, as shown in Fig. 5.
Using the first four-terms of expression (41), we have the local skin friction
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Fig. 6. The comparison of the four-term approximation (42) of Cx
f
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Rex

p
at dimensionless time s = a t with the numerical

result.
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Cx
f ðx; nÞ ¼ ðnRexÞ�1=2ð�0:5643747892� 0:4653303619nþ 2:998049008� 10�2n2

� 2:518392990� 10�3n3Þ: ð42Þ
Even this simplified analytic expression agrees well with the numerical result for all time
0 6 s < +1, as shown in Fig. 6. Thus, by means of choosing �h = �1/4, we obtain an accurate
analytic solution uniformly valid for all time 0 6 s < +1 in the whole region 0 6 g < +1. To
the best of our knowledge, such a kind of analytic solution has never been reported.

It should be emphasized that the solution series diverges when �h = �1 but converges when
�h = �1/4. So, it is the auxiliary parameter �h that provides us with a simple way to insure the con-
vergence of the solution series. This is an advantage of the homotopy analysis method.
6. Conclusion

In this paper, the unsteady boundary-layer flows caused by an impulsively stretching flat plate is
solved by means of an analytic technique, namely the homotopy analysis method [23]. Unlike
perturbation techniques, our approach gives accurate analytic solutions uniformly valid for all
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dimensionless time 0 6 s < +1 in the whole region 0 6 g < +1. Besides, an analytic formula (41)
at the 30th-order of approximation for the local skin friction is given, which agrees well with numer-
ical results. And even the four-term expression (42) of the local skin friction is accurate and valid for
all time 0 6 s < +1, and thus is useful in the related industries mentioned at the beginning of this
paper. To the best of our knowledge, such kind of analytic solutions has never been reported.

There exist many similar unsteady boundary-layer flows and related heat transfer problems,
such as the unsteady Blasius boundary-layer flows, unsteady Falkner–Skan boundary-layer flows,
unsteady von Kármán swirling viscous flows, and so on. Most of these unsteady boundary-layer
flows can be solved in the similar way without difficulties. So, this article provides us with a gen-
eral approach to get accurate analytic solutions of unsteady boundary-layer flows, which are uni-
formly valid for all time.
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