
1 23

Numerical Algorithms
 
ISSN 1017-1398
Volume 69
Number 1
 
Numer Algor (2015) 69:59-74
DOI 10.1007/s11075-014-9881-5

A HAM-based analytic approach for
physical models with an infinite number of
singularities

Dali Xu, Jifeng Cui, Shijun Liao &
A. Alsaedi



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Numer Algor (2015) 69:59–74
DOI 10.1007/s11075-014-9881-5

ORIGINAL PAPER

A HAM-based analytic approach for physical models
with an infinite number of singularities

Dali Xu ·Jifeng Cui ·Shijun Liao ·A. Alsaedi

Received: 18 April 2014 / Accepted: 9 June 2014 / Published online: 22 June 2014
© Springer Science+Business Media New York 2014

Abstract Based on the Homotopy Analysis Method (HAM), an analytic approach
is proposed to solve physical models with an infinite number of “singularities”.
The nonlinear interaction of double cnoidal waves governed by the Korteweg-de
Vries (KdV) equation is used to illustrate its validity. The HAM is an analytic tech-
nique for highly nonlinear problems, which is based on the homotopy in topology
and thus has nothing to do with small physical parameters. Besides, the HAM pro-
vides us great freedom to choose proper equation-type and solution-expression for
high-order approximation equations. Especially, unlike other methods, the HAM can
guarantee the convergence of solution series. Using the HAM, an infinite number of
zero denominators of the considered problem are avoided once for all by properly
choosing an auxiliary linear operator, as illustrated in this paper. This HAM-based
approach has general meanings and can be used to solve many physical problems
with lots of “singularities”. It also suggests that the so-called “singularity” might
not exist physically, but only due to the imperfection of used mathematical methods,
because the nature should not contain any singularities at all.
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1 Introduction

Many physical models have an infinite number of singularities. For example, let
us consider the interaction of double cnoidal waves governed by the Korteweg-de
Vries (KdV) equation. When one uses perturbation method to solve this problem, an
infinite number of zero denominators are encountered. In order to overcome these
zero denominators, Haupt [1, 2] used the Stokes’ expansion by adding the resonant
mode “at the order of resonance with an unknown coefficient to be determined at
higher order”. However, since there are an infinite number of zero denominators,
say, an infinite number of resonant modes, and each of them should be added with
an unknown coefficient to be determined, this Stokes’ expansion is tiring, and rather
complicated.

In this paper, the homotopy analysis method (HAM) [3, 4] is used to pro-
posed an analytic approach to solve physical models with an infinite number
of singularities encounted by the perturbation method. The HAM has been suc-
cessfully applied for nonlinear problems in various areas, such as water waves
[5–7], finance [8], nanofluids [9] and so on [10–13]. Different from perturbation
method, the HAM is independent of any small/large physical parameter. Unlike
other analytic approximation method, it provides us a simple way to guarantee
the convergence of the approximation. In particular, the HAM provides us great
freedom to choose the auxiliary linear operator [14], which is the key point mak-
ing it convenient for us to avoid an infinite number of zero denominators in this
paper. This is mainly because the HAM transfers the original nonlinear equation
into an infinite number of linear sub-problems, governed by the so-called auxil-
iary linear operators. Thus, as long as the auxiliary linear operators are chosen
properly, all zero denominators can be avoided so that these sub-problems can be
solved easily.

This paper is organized as follows. The illustrated example is described in §2. The
solving procedure of the HAM-based approach is described in§3. Conclusions are
presented in §4.

2 An illustrative example

In this paper, we use the Korteweg-de Vries equation in the following form to
illustrate how the HAM can overcome an infinite number of zero denominators
efficiently:

vt (x, t) + αvxxx(x, t) + βv(x, t)vx(x, t) = 0, (1)

which has polycnoidal wave solutions [15], where α = 1 and β = 1 are considered
in this paper, v(x, t) describes the wave amplitude affected by both weak nonlinear-
ity and dispersion, and the subscript denotes the partial differentiation with respect
to the time t and the space x, respectively. We search for the solution of the dou-
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ble cnoidal wave interaction with time-independent wave amplitude and frequency
in the form

v(x, t) = u(ξ1, ξ2) =
+∞∑

m=1

am,0 cos(mξ1) +
+∞∑

n=1

a0,n cos(nξ2)

+
+∞∑

m=1

+∞∑

n=1

am,n cos(mξ1 + nξ2) +
+∞∑

m=1

+∞∑

n=1

am,−n cos(mξ1 − nξ2), (2)

which is an approximation of the elliptic function involved in the cnoidal waves,
where ξ1 and ξ2 are defined by

ξ1 = k1 x − σ1 t + θ1, (3)

ξ2 = k2 x − σ2 t + θ2, (4)

am,n are constants, ki and σi (i = 1, 2) are the wavenumber and angular frequency
of the double cnoidal waves with phase difference θi , respectively. Then, under the
chain rule, the original KdV equation (1) hence reads

α
(
k31 uξ1ξ1ξ1 + 3k21k2uξ1ξ1ξ2 + 3k1k

2
2uξ1ξ2ξ2 + k32uξ2ξ2ξ2

)

−(σ1uξ1 + σ2uξ2) + βu (k1uξ1 + k2uξ2) = 0. (5)

Before describing the HAM-based approach for (5), we first introduce the pertur-
bation procedure simply to find out the main reason causing the perturbation method
so tiring, i.e. an infinite number of zero denominators.

Let a1 cos (ξ1) and a2 cos (ξ2) denote the two primary waves. For small wave
amplitude, the wave elevation u(ξ1, ξ2) and frequency σi (i = 1, 2) can be obtained
by expanding in terms of a small physical parameter. Without loss of generality,
choosing a1 = ε as the small parameter and a2 = O(ε), the solution hence becomes

u =
+∞∑

n=1

εnun, σ1 =
+∞∑

n=0

εnσ1,n, σ2 =
+∞∑

n=0

εnσ2,n. (6)

Substituting (6) into equation (5) and matching the coefficient of εn, we have the
nth-order perturbation equation:

L[un] = Fn(ξ1, ξ2) =
∑

i

∑

j

d
i,j
n sin (iξ1 + jξ2), n = 1, 2, 3, · · · (7)

where d
i,j
n are known constants and

L[f ] = α(k31fξ1ξ1ξ1 + 3k21k2fξ1ξ1ξ2 + 3k1k
2
2fξ1ξ2ξ2 + k32fξ2ξ2ξ2)

−σ1,0fξ1 − σ2,0fξ2, (8)

with the property

L−1[sin(iξ1 + jξ2)] = 1

δi,j

cos (iξ1 + jξ2), (9)

δi,j = α(ik1 + jk2)
3 + iσ1,0 + jσ2,0. (10)
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Here L−1 is the inverse operator of L defined by (8) and σi,0 = −αk3i (i = 1, 2)

are determined by enforcing d
1,0
1 = 0 and d

0,1
1 = 0 in order to balance the 1st-order

perturbation equation. Since the linear operator has the property (9), the nth-order
perturbation solution becomes

un =
∑

i

∑

j

d
i,j
n

δi,j

cos (iξ1 + jξ2), n = 1, 2, 3, · · · (11)

Meanwhile, the nth-order solution of the wave frequencies σ1,n and σ2,n are deter-
mined by enforcing d

1,0
n = 0 and d

0,1
n = 0 in the right-hand side of the nth-order

perturbation equation (7), since δ1,0 ≡ 0 and δ0,1 ≡ 0 in (10).
Unfortunately, the perturbation solution (11) breaks down, since there are an infi-

nite number of zero denominators caused by δi,j = 0, namely that, for any given
k1 and k2, there are an infinite number of groups (i, j) resulting in δi,j = 0 for the
resonant wavenumber (ik1+jk2). Without loss of generality, let us consider the case

k1 = 1, k2 = 2. (12)

The values of (i, j) corresponding to δi,j = 0 are shown in Table 1. For lack of space,
only the domain of 0 ≤ i ≤ 5000 and −5000 ≤ j ≤ 5000 are presented although
actually there are an infinite number of sets (i, j). These zero denominators result
from the corresponding secular terms sin (iξ1 + jξ2) in the right-hand side of (7).

3 Analytic approach based on the HAM

Haupt [1, 2] have used the Stokes’ expansion to overcome the zero denominators
mentioned in §2. In the Stokes’ expansion, the resonant mode with wavenumber
(ik1 + jk2) for δi,j = 0 should be added “at the order of resonance with an unknown

Table 1 The values of (i, j)

corresponding to δi,j = 0 when
k1 = 1 and k2 = 2 in (10)

(i,j) (i,j)

(0, 1) (715, −364)

(1, 0) (896, −455)

(5, −4) (1105, −560)

(16, −10) (1344, −680)

(35, −20) (1615, −816)

(64, −35) (1920, −969)

(105, −56) (2261, −1140)

(160, −84) (2640, −1330)

(231, −120) (3059, −1540)

(320, −165) (3520, −1771)

(429, −220) (4025, −2024)

(560, −286) (4576, −2300)
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coefficient to be determined at higher order”, as pointed by Haupt [2]. This proce-
dure must be done for every resonant mode and is rather complex when there exist
an infinite number of zero denominators.

In order to avoid an infinite number of zero denominators conveniently, the homo-
topy analysis method (HAM) is used in this paper. In particular, since HAM provides
us great freedom to choose the auxiliary linear operator [14], we can choose such
an auxiliary linear operator that the infinite number of zero denominators can be
automatically avoided, as shown below.

3.1 Continuous variation

The HAM is based on the homotopy in topology, transforming a nonlinear equation
into an infinite number of linear sub-problems by introducing the homotopy-
parameter q ∈ [0, 1]. We construct such a family of equations, namely the
zeroth-order deformation equation:

(1−q) L̄ [U(ξ1, ξ2; q) − u0(ξ1, ξ2)] = q c0 N [U(ξ1, ξ2; q), 	1(q), 	2(q)] , (13)

where L̄ denotes an auxiliary linear operator with the property L̄[0] = 0, c0 �= 0
the convergence-control parameter, u0(ξ1, ξ2) the guess approximation of u(ξ1, ξ2),
respectively. Here U(ξ1, ξ2; q) is a mapping of the unknown function u(ξ1, ξ2), and
	1(q), 	2(q) are mappings of the unknown angular frequencies σ1, σ2, respectively.
The nonlinear operator N defined according to the initial nonlinear equation (5) is

N [U(ξ1, ξ2; q), 	1(q), 	2(q)] = α
(
k31 Uξ1ξ1ξ1 + 3k21k2Uξ1ξ1ξ2 + 3k1k

2
2Uξ1ξ2ξ2

+k32Uξ2ξ2ξ2

)
− (

	1(q)Uξ1 + 	2(q)Uξ2

) + βU (k1Uξ1 + k2Uξ2). (14)

As the embedding parameter q ∈ [0, 1] increases from 0 to 1, the map-
ping function U(ξ1, ξ2; q) varies from the guess approximation u0(ξ1, ξ2) to the
solution u(ξ1, ξ2) of equation (5), so do 	1(q), 	2(q) from the guess approxima-
tions σ1,0, σ2,0 to the angular frequencies σ1, σ2, respectively. Note that the guess
approximations

σ1,0 = 	1(0), σ2,0 = 	2(0) (15)

should be determined. Assume that the Taylor series

U(ξ1, ξ2; q) = u0(ξ1, ξ2) +
+∞∑

n=1

un(ξ1, ξ2) qn, (16)

	1(q) = σ1,0 +
+∞∑

n=1

σ1,n qn, (17)

	2(q) = σ2,0 +
+∞∑

n=1

σ2,n qn, (18)
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exist, where

un(ξ1, ξ2) = 1

n!
∂nU(ξ1, ξ2; q)

∂qn

∣∣∣∣
q=0

, (19)

σ1,n = 1

n!
∂n	1(q)

∂qn

∣∣∣∣
q=0

, (20)

σ2,n = 1

n!
∂n	2(q)

∂qn

∣∣∣∣
q=0

. (21)

Note also that we have great freedom to choose the auxiliary linear operator L̄, the
guess approximation u0(ξ1, ξ2) and the convergence-control parameter c0. Assume
that all of them are so properly chosen that the Taylor series (16) - (18) are convergent
at q = 1. Then we have the Mth-order approximation

u(ξ1, ξ2) ≈ u0(ξ1, ξ2) +
M∑

n=1

un(ξ1, ξ2), (22)

σ1 ≈ σ1,0 +
M∑

n=1

σ1,n, (23)

σ2 ≈ σ2,0 +
M∑

n=1

σ2,n. (24)

Till now un(ξ1, ξ2), σ1,n, σ2,n are unknown, which will be determined by solving
the so-called high-order deformation equation. By differentiating (13) n times with
respect to q, then setting q = 0 and dividing it by n!, we can obtain the nth-order
deformation equation:

L̄
[
un(ξ1, ξ2) − χn un−1(ξ1, ξ2)

] = c0 Rn(ξ1, ξ2, �σ1,n−1, �σ2,n−1), (25)

where

�σ1,n = {
σ1,0, σ1,1, σ1,2, · · · , σ1,n

}
, (26)

�σ2,n = {
σ2,0, σ2,1, σ2,2, · · · , σ2,n

}
. (27)

Rn(ξ1, ξ2, �σ1,n−1, �σ2,n−1)

= 1

(n − 1)!
{

dn−1N [U(ξ1, ξ2; q), 	1(q), 	2(q)]

dqn−1

}∣∣∣∣
q=0

= α

(
k31

∂3un−1

∂ξ1∂ξ1∂ξ1
+ 3k21k2

∂3un−1

∂ξ1∂ξ1∂ξ2
+ 3k1k

2
2

∂3un−1

∂ξ1∂ξ2∂ξ2
+ k32

∂3un−1

∂ξ2∂ξ2∂ξ2

)

−
n−1∑

j=0

(
σ1,j

∂un−1−j

∂ξ1
+ σ2,j

∂un−1−j

∂ξ2

)

+ β

n−1∑

j=0

uj

(
k1

∂un−1−j

∂ξ1
+ k2

∂un−1−j

∂ξ2

)
(28)
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with the definition

χn =
{
0, when n ≤ 1,
1, when n > 1.

(29)

It should be emphasized that the nth-order deformation equation (25) is linear with
the known right-hand side term and thus is easy to solve successively.

3.2 Auxiliary linear operator

Before solving the high-order deformation equation (25) to obtain un(ξ1, ξ2), σ1,n
and σ2,n, most important of all, the auxiliary linear operator L̄ should be determined
first. As mentioned in §3, equation (5) can not be solved by the perturbation method
since there are inevitably an infinite number of zero denominators, as shown in Table
1. Thus, the linear operator can not simply be the linear part of equation (5). It should
be mentioned that although Haupt [1, 2] gave some treatments to overcome these
zero denominators, the procedure is rather complex especially when the number of
the zero denominators is infinite. However, the HAM can avoid these an infinite
number of zero denominators easily and effectively by choosing a proper auxiliary
linear operator, as illustrated in this section.

Since HAM provides us great freedom to choose the auxiliary linear operator,
in the general case of double cnoidal waves, we can choose the following auxiliary
linear operator

L̄u = α
[
k31

(
uξ1ξ1ξ1 + uξ1

) + c1 k32
(
uξ2ξ2ξ2 + uξ2

)]
, k1 > 0, k2 > 0, (30)

where c1 �= 0 is the second convergence-control parameter (the first one is c0). This
linear operator has the properties:

L̄[cos(mξ1 + nξ2)] = −δ̄i,j sin(mξ1 + nξ2). (31)

where

δ̄i,j = α
[
k31 m(1 − m2) + c1 k32 n(1 − n2)

]
, α �= 0. (32)

Note that, in the case of m = 0 or m = ±1, and n = 0 or n = ±1, we have

L̄ [cos(ξ1)] = L̄ [cos(ξ2)] = L̄ [cos(ξ1 + ξ2)] = L̄ [cos(ξ1 − ξ2)] = 0. (33)

And the inverse operator L̄−1 has the following property:

L̄−1[sin(mξ1 + nξ2)] = − 1

δ̄i,j

cos(mξ1 + nξ2), (34)

where m(1 − m2) = 0 and n(1 − n2) = 0 in (32) do not hold at the same time. It
should be emphasized that we have great freedom to choose the value of the second
convergence-control parameter c1 so that it is easy for us to ensure

δ̄i,j �= 0

for all integers m, n while

m(1 − m2) �= 0, n(1 − n2) �= 0.
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For example, when m(1 − m2) �= 0 and n(1 − n2) �= 0, we choose c1 as an
irrational number, such as π,

√
2 and so on. Then, k31m(1 − m2) �= 0 is a non-zero

rational number, but c1 k32 n(1 − n2) is a non-zero irrational one, therefore it holds

k31 m(1 − m2) + c1 k32 n(1 − n2) �= 0

for all possible integers m and n except m = 0, n = 1, or m = 1, n = 0, or m =
1, n = ±1, because the sum of a non-zero rational number and a non-zero irrational
number is always a non-zero irrational number. It should be emphasized that different
values of c1 give the same result. For this reason and without loss of generality, we
choose c1 = π/3. In this way, the an infinite number of zero denominators mentioned
in §2 can be avoided automatically and no more treatments need to be done.

3.3 Solution of the high-order deformation equation

In this part, after the auxiliary linear operator is determined, the high-order deforma-
tion equation (25) is solved in order to get the solution of un(ξ1, ξ2), σ1,n and σ2,n.
Recalling that we are searching for the solutions expressed by (2) and

L̄ [B1 cos(ξ1) + B2 cos(ξ2) + B3 cos(ξ1 + ξ2) + B4 cos(ξ1 − ξ2)] = 0

for arbitrary constants B1, B2, B3 and B4, we choose the following guess
approximation

u0(ξ1, ξ2) = a1 cos(ξ1) + a2 cos(ξ2) + λ0 a1a2 cos(ξ1 + ξ2) + μ0 a1a2 cos(ξ1 − ξ2),

(35)
where a1 and a2 are given, but λ0 and μ0 are unknown constants related to the wave
interactions whose values will be determined later. Note that it holds

L̄u0(ξ1, ξ2) = 0.

More importantly, as shown below, the unknown constants λ0 and μ0 must be
introduced here so as to avoid the secular terms in u(ξ1, ξ2).

When n = 1, it is found that

R1(ξ1, ξ2, �σ1,0, �σ2,0) =
2∑

i=0

2∑

j=−2

B
i,j

1 sin(i ξ1 + j ξ2), (36)

where

B
1,0
1 = a1

[
αk31 − 1

2
βk1(λ0 + μ0)a

2
2 + σ1,0

]
, (37)

B
0,1
1 = a2

[
αk32 − 1

2
βk2(λ0 + μ0)a

2
1 + σ2,0

]
, (38)

B
1,1
1 = −a1a2

[
1

2
β(k1 + k2) − αλ0(k1 + k2)

3 − λ0(σ1,0 + σ2,0)

]
, (39)

B
1,−1
1 = −a1a2

[
1

2
β(k1 − k2) − αμ0(k1 − k2)

3 − μ0(σ1,0 − σ2,0)

]
, (40)

...
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According to (34), to avoid the so-called secular terms, the coefficients B
1,0
1 , B0,1

1 ,

B
1,1
1 and B

1,−1
1 must be zero, which give the set of algebraic equations

αk31 − 1

2
βk1(λ0 + μ0)a

2
2 + σ1,0 = 0, (41)

αk32 − 1

2
βk2(λ0 + μ0)a

2
1 + σ2,0 = 0, (42)

1

2
β(k1 + k2) − αλ0(k1 + k2)

3 − λ0(σ1,0 + σ2,0) = 0, (43)

1

2
β(k1 − k2) − αμ0(k1 − k2)

3 − μ0(σ1,0 − σ2,0) = 0. (44)

According to the above algebraic equations, we can have the solution of σ1,0, σ2,0,
λ0 and μ0. Then, the corresponding particular solution is given by

u∗
1(ξ1, ξ2) = L̄−1 [

c0 R1(ξ1, ξ2, σ1,0, σ2,0)
]

= c0 B
2,0
1

6αk31

cos(2 ξ1) + c0 B
0,2
1

6αc1k
3
2

cos(2 ξ2) + c0 B
1,2
1

6αc1k
3
2

cos(ξ1 + 2ξ2)

+c0 B
2,1
1

6αk31

cos(2ξ1 + ξ2) + c0 B
2,2
1

6α(k31 + c1k
3
2)

cos(2ξ1 + 2ξ2)

−c0 B
1,−2
1

6αc1k
3
2

cos(ξ1 − 2ξ2) + c0 B
2,−1
1

6αk31

cos(2ξ1 − ξ2)

+ c0 B
2,−2
1

6α(k31 − c1k
3
2)

cos(2ξ1 − 2ξ2). (45)

And the general solution of u1(ξ1, ξ2) is given by

u1(ξ1, ξ2) = u∗
1(ξ1, ξ2) + A1,1 cos(ξ1) + A1,2 cos(ξ2)

+λ1a1a2 cos(ξ1 + ξ2) + μ1a1a2 cos(ξ1 − ξ2). (46)

Because the primary wave components a1 cos(ξ1) and a2 cos(ξ2) are known, thus the
coefficients A1,1 and A1,2 must be zero. Therefore, we have

u1(ξ1, ξ2) = u∗
1(ξ1, ξ2) + λ1a1a2 cos(ξ1 + ξ2) + μ1a1a2 cos(ξ1 − ξ2), (47)

where λ1 and μ1 are unknown, which can be determined later in a similar way.
In the general case of n ≥ 1, it is found that

Rn =
n+1∑

i=0

n+1∑

j=−n−1

B
i,j
n sin(i ξ1 + j ξ2), (48)

and the unknown coefficients σ1,n−1, σ2,n−1, λn−1, μn−1 are determined by a set of
algebraic equations

B1,0
n = 0, B0,1

n = 0, B1,1
n = 0, B1,−1

n = 0. (49)

Similarly, we can solve the linear high-order deformation equation (25) successively,
in the order n = 1, 2, 3, · · · . By means of the inverse operator (34) and using the
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Table 2 The solution of
equations (41)-(44) when the
guess approximation is chosen
as (35) for the case of k1 =
1, k2 = 2, a1 = 1/2, a2 = 1/10
and c1 = π/3

i λ0 μ0 σ1,0 σ2,0

group 1 0.0833333 −0.0833333 −1.00000 −8.00000

group 2 0.0618146 24.5112 −0.877135 −1.85674

group 3 −70.65 −0.0214459 −1.35336 −25.6679

symbolic computation software such as Mathematica, it is easy to get solutions of
such kind of linear equations.

It should be mentioned that there are only four homogeneous solutions of the
auxiliary linear operator (30). In other words, in the high-order deformation equa-
tion (25) there are only four correspondingly secular terms which can be avoided by
enforcing their coefficients to be zero. This just can determine the unknown quanti-
ties of λn, μn, σ1,n and σ2,n. In this process, the infinite number of zero denominators
mentioned in §2 disappear automatically.

3.4 Results analysis

In this section, the convergent-control parameter c0 is determined through the
residuals of equation (5) to ensure the convergence of the HAM approxima-
tions (22)-(24). The convergent wave angular frequencies σ1 and σ2 are presented
in detail. In addition, the energy distribution of the wave system is investigate
as well.
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Fig. 1 The averaged residual squares versus c0 in the case of a1 = 1/2, a2 = 1/10, k1 = 1, k2 =
2 by means of c1 = π/3. Solid line: 1st-order approximation; Dashed line: 3rd-order approximation;
Dash-dotted line: 5th-order approximation; Dot: 6th-order approximation; Dash-dot-dotted line: 7th-order
approximation
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Fig. 2 The averaged residual squares versus the approximation order n in the case of a1 = 1/2, a2 =
1/10, k1 = 1, k2 = 2 by means of c0 = −0.2 and c1 = π/3

3.4.1 Validation of the HAM solution

Let us first consider the case

a1 = 1/2, a2 = 1/10, k1 = 1, k2 = 2. (50)

The solution of the algebraic equations (41)-(44) is shown in Table 2. Take group 1
in Table 2 as an example to illustrate the determination of the unknown convergent-
control parameter c0. Define the averaged residual square as

En = 1

(1 + K)2

K∑

i=0

K∑

j=0

⎧
⎨

⎩N

⎡

⎣u(i�ξ1, j�ξ2),

n∑

p=0

σ1,p,

n∑

p=0

σ2,p

⎤

⎦

⎫
⎬

⎭

2

at the nth-order of approximation, where

�ξ1 = �ξ2 = π

M
,

Table 3 The averaged residual
squares in the case of k1 = 1,
k2 = 2, a1 = 1/2, a2 = 1/10 by
means of c0 = −0.2 and
c1 = π/3

n(order of approximation) En

1 4.57 ×10−3

10 9.00 ×10−5

20 1.31 ×10−6

30 2.48 ×10−8

40 2.07 ×10−9
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Table 4 The angular
frequencies in the case of k1 =
1, k2 = 2, a1 = 1/2, a2 = 1/10
by means of c0 = −0.2 and
c1 = π/3

n σ1 σ2

10 −0.99070 −7.99986

20 −0.98970 −7.99981

30 −0.98959 −7.99979

40 −0.98958 −7.99978

45 −0.98958 −7.99978

50 −0.98958 −7.99978

andN is defined by (14). Here, we use M = 10 in this paper. The residual square En

is dependent upon c0, as shown in Fig. 1. As n (the order of approximation) increases,
the residual square En decreases in the region of −0.26 < c0 < 0, which defines a
domain cc corresponding to convergent series solutions, namely that the series (22) -
(24) are convergent as long as we choose any value of c0 ∈ cc. In this way, we can
ensure the convergence of approximation. This approach is called “optimal homo-
topy analysis” [16–18]. A general optimal approach with infinite convergent-control
parameters can be found in Niu [19] and Liao [4]. The averaged residual square
En decreases as the order of approximation increases by means of c0 = −0.2, as
shown by Fig. 2 and Table 3. The corresponding angular frequencies σ1 and σ2 con-
verge as shown in Table 4. It should be emphasized that the HAM result agrees well
with the 3rd-order perturbation solution given by the Stokes expansion [2], as pre-
sented in Table 5 and 6 for different amplitudes, where σStokes

1 = k1(−1 + a21/24),
σStokes
2 = k2(−4 + a22/96). The solutions at different time when k1 = 1, k2 = 2,

a1 = 1/2, a2 = 1/4 are plotted in Fig. 3.
Meanwhile, it should be mentioned that, when it is computed to higher orders,

there is no convergent solutions for group 2 and 3 in Table 2.

Table 5 The angular
frequencies of the HAM and
Stokes expansion versus a2 in
the case of
k1 = 1, k2 = 2, a1 = 1/2

a2 σHAM
1 σStokes

1 σHAM
2 σStokes

2

0.1 −0.98958 −0.98958 −7.99978 −7.99979

0.2 −0.98958 −0.98958 −7.99915 −7.99917

0.4 −0.98958 −0.98958 −7.99663 −7.99667

0.6 −0.98957 −0.98958 −7.99244 −7.99250

0.8 −0.98956 −0.98958 −7.98657 −7.98667

1.0 −0.98956 −0.98958 −7.98657 −7.97917

1.2 −0.98954 −0.98958 −7.96980 −7.97000

1.4 −0.98943 −0.98958 −7.95889 −7.95917

1.6 −0.98933 −0.98958 −7.94631 −7.94667

Author's personal copy



Numer Algor (2015) 69:59–74 71

Table 6 The angular frequencies of the HAM and Stokes expansion versus a1 in the case of k1 = 1, k2 =
2, a2 = 1/2

a1 σHAM
1 σStokes

1 σHAM
2 σStokes

2

0.1 −0.99958 −0.99958 −7.99479 −7.99479

0.2 −0.99833 −0.99833 −7.99479 −7.99479

0.4 −0.99333 −0.99333 −7.99476 −7.99479

0.6 −0.98499 −0.98500 −7.99471 −7.99479

0.8 −0.97329 −0.97333 −7.99460 −7.99479

1.0 −0.95824 −0.95833 −7.99441 −7.99479

1.2 −0.93983 −0.94000 −7.99408 −7.99479

1.4 −0.91803 −0.91833 −7.99360 −7.99479

1.6 −0.89282 −0.89333 −7.99281 −7.99479
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Fig. 3 The solution of v(x, t) in the case of a1 = 1/2, a2 = 1/4, k1 = 1, k2 = 2. (a): t = 0; (b): t = 0.2;
(c): t = 0.4; (d): t = 0.5
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Table 7 The energy
distribution of the wave system
in the case of a1 = 1/2, a2 =
1/10, k1 = 1, k2 = 2 by means
of c0 = −0.2 and c1 = π/3

(m, n) Em,n Annotation

(1,0) 0.9598 primary wave

(0,1) 3.84 × 10−2 primary wave

(2,0) 1.66 × 10−3

(1,−1) 6.66 × 10−5

(1,1) 6.67 × 10−5

(0,2) 1.65 × 10−7

(3,0) 1.62 × 10−6

(2,1) 9.12 × 10−8

(1,−2) 5.86 × 10−9

(1,2) 5.53 × 10−10

(0,3) 3.92 × 10−13

· · · · · ·
(5,−4) 2.45 × 10−34 resonant wave

· · · · · ·
(16,−10) 3.17 × 10−112 resonant wave

· · · · · ·

3.4.2 Energy distribution of the wave system

We define

� =
+∞∑

n=1

a20,n +
+∞∑

m=1

+∞∑

n=−∞
a2m,n, Em,n = a2m,n/�, (51)

where � denotes the total energy of the wave system and Em,n the energy of the
mode cos (mξ1 + nξ2). The energy distribution of different wave modes is presented
in Table 7. It is remarkable that the resonant components (corresponding to the
wavenumber (ik1 + jk2) for δi,j = 0) have nothing special compared with other har-
monics in the energy distribution, namely that the higher-order harmonics have less
wave energy than the lower-order ones. For sake of space, only the first two resonant
wave components are shown in Table 7.

4 Concluding remarks

In the frame of the HAM, the infinite number of zero denominators encountered by
perturbation method can be avoided conveniently by choosing a proper auxiliary lin-
ear operator for high-order approximation equations, as illustrated by the the KdV
equation. Mathematically, the HAM-based approach is much easier and convenient
than the Stokes expansion, since we do not need to add terms with to-be-determined
coefficients for each singularity [1, 2]. This HAM-based approach has general mean-
ings and can be used to solve many physical problems with an infinite number of
singularities.
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It should be mentioned that such kind of “singularities” are induced by pertur-
bation method, but do not really exist physically. In this paper, we take the KdV
equation as an example to illustrate that the HAM-based approach is effective and
convenient, even if there exist such kind of an infinite number of “singularities”. This
is mainly because the HAM provides us great freedom to choose a much better aux-
iliary linear operator than the original ones. It also illustrates the great potential and
advantages of the HAM with comparison to perturbation techniques. Possibly, using
this kind of freedom of the HAM, lots of complicated, difficult nonlinear problems
might be solved in more convenient ways.

In addition, it also suggests that, in general cases, the so-called “singularities”
might not exist in nature at all, but only due to the imperfection of used mathematical
methods, because the nature should not contain any singularities!
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