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A challenging nonlinear problem for numerical techniques
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Abstract

In this paper we show that a nonlinear boundary-value problem describing Blasius viscous flow of a kind of
non-Newtonian fluid has an infinite number of explicit analytic solutions. These solutions are rather sensitive to
the second-order derivative at the boundary, and the difference of the second derivatives of two obviously different
solutions might be less than 10−1000. Therefore, it seems impossible to find out all of these solutions by means of
current numericalmethods. Thus, this nonlinear problemmight become a challenge to current numerical techniques.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The two-dimensional Blasius viscous flow of power-law fluid on a semi-infinite flat plane[1–5] can
be described by the boundary layer equation

f ′′′(f ′′)n−1 + ff ′′ = 0, (1)

subject to the boundary conditions

f (0) = f ′(0) = 0, f ′(+∞) = 1, (2)

where the prime denotes the differentiation with respect to the simplicity variable�. The numerical results
of f ′′(0) whenn = 1 andn = 2 are given by Kim et al.[4] and Akcay et al.[5], as shown inTable 1.
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Table 1
Numerical results off ′′(0) whenn = 1 andn = 2

n Value given by Kim et al.[4] Value given by Akcay et al.[5]

1 0.469599988 0.4696
2 0.726468 0.7274

The discontinuities in this equation were first investigated by Teipel[6]. He pointed out the difficulty to
satisfy the outer boundary condition, not only when the power-law index is equal to 2(n = 2), but also
when 1< n <2 andn >2. He indicated to the discontinuities in the third and fourth derivatives of the
function f for n >1. Teipel[6] concluded also that the difficulties encountered are the result of the used
power-law model.

2. An infinite number of solutions whenn = 2

Let us consider a special non-Newtonian fluid, say,n = 2. In this case, Eq. (1) becomes

(f ′′′ + f )f ′′ = 0, (3)

subject to the same boundary conditions (2). The above equation gives either

f ′′′(�) + f (�) = 0 (4)

or

f ′′(�) = 0. (5)

The solution of Eq. (4) can be generally expressed by

fA(�) = C1 exp(−�) + exp(�/2)

[
C2 sin

(√
3

2
�

)
+ C3 cos

(√
3

2
�

)]
, (6)

whereC1, C2, andC3 are coefficients to be determined. Substituting the wall boundary conditions

f (0) = f ′(0) = 0

into (6), we have the solution

fA(�) = cg(�), (7)

wherec is a coefficient to be determined and the functiong(�) is defined by

g(�) = exp(−�) − exp(�/2) cos

(√
3

2
�

)
+ √

3exp(�/2) sin

(√
3

2
�

)
. (8)

Obviously, the above solution does not satisfy the mainstream boundary condition

f ′(+∞) = 1.
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The solution of (5) is given by

fB(�) = C4� + d, (9)

whereC4 andd are coefficients. Using the mainstream boundary condition

f ′(+∞) = 1,

we haveC4 = 1, therefore

fB(�) = � + d, (10)

which, however, does not satisfy the wall boundary conditions

f (0) = f ′(0) = 0.

So, neitherfA(�) norfB(�) satisfies all of the boundary conditions (2).
Note thatfA(�) that satisfies thewall boundary condition canbe regardedasan inner solution, andfB(�)

that satisfies the mainstream boundary condition at infinity can be seen as an outer solution, provided
there exists such a marching point at� = �∗ that

fA(�∗) = fB(�∗), (11)

f ′
A(�∗) = f ′

B(�∗), (12)

f ′′
A(�∗) = f ′′

B(�∗). (13)

Substituting (7) and (10) into the above expressions, we have

cg(�)∗ = �∗ + d, (14)

cg′(�∗) = 1, (15)

g′′(�∗) = 0, (16)

which determine the unknowncoefficientsc, d and thematching-point�∗. Due to (16) and (8), the position
of the marching-points is given by the nonlinear algebraic equation

exp(−�∗) + 2 exp(�∗/2) cos
(√

3

2
�∗
)

= 0. (17)

The above equation can be rewritten as

exp

(
−3
2
�∗
)

= −2 cos
(√

3

2
�∗
)

. (18)

Obviously, the curve

� = exp

(
−3
2

�∗
)
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and the curve

� = −2 cos
(√

3

2
�∗
)

have an infinite number of intersections. Thus, Eq. (18) has an infinite number of solutions

�∗
1 = 1.849812799190,

�∗
2 = 5.441233355024,

�∗
3 = 9.068997534872,

�∗
4 = 12.696595546547,

�∗
5 = 16.324194278121,

...

Note that

� = exp
(−3

2 �∗)
exponentially tends to zero. When� > �∗

5,

exp
(−3

2 �
)
<2.32× 10−11,

so that the term on the left-hand side of (18) can be approximately regarded as zero and thus

�∗
k = (2k − 1)�√

3
, k�6, (19)

is a rather accurate solution of (18) fork�6.
As long as the position�∗

k of thekth marching-point is known, we have by (15) and (14) the coefficients

ck = 1

g′(�∗
k)

, (20)

dk = g(�∗
k)

g′(�∗
k)

− �∗
k. (21)

Then, thekth solution is given by

fk(�) =
{

ckg(�) when 0�� < �∗
k,

� + dk when���∗
k,

(22)

wherek = 1,2,3, . . . . Mathematically, the function defined above satisfies the governing equation (3)
in the whole region 0�� < + ∞ and all of the boundary conditions (2) at� = 0 and at infinity. The
first 10th solutions are as shown inFig. 1. Note that the third-order derivatives at the matching point are
discontinuous. Teipel[6] also pointed out this kind of discontinuation.
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Fig. 1. The curvef ′(�) of the first 10th solutions.

Table 2
Theoretical value off ′′(0) of thekth solution

k f ′′
k

(0)

1 0.726467684935
3 1.858888323369× 10−2
5 4.940909271256× 10−4
10 −5.691039543711× 10−8
50 −1.763069354421× 10−39
100 −7.246305476685× 10−79
200 −1.224083719056× 10−157
500 −5.900578217031× 10−394
1000 −8.116466274166× 10−788
2000 −1.535719227834× 10−1575
5000 −1.040270594067× 10−3938

10 000 −2.522728359963× 10−7877

Due to (22) and (8), we have the value off ′′(0) of thekth solution, i.e.

f ′′
k (0) = 3ck. (23)

The values off ′′(0) of some solutions are listed inTable 2. Note thatf ′′(0) given by the first solution
f1(�) agrees with the numerical ones given by Kim et al.[4]. Define

�k = f ′′
k (0) − f ′′

k−1(0)
f ′′

k−1(0) − f ′′
k−2(0)

, k�3.
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By means of (19), we have

lim
k→+∞ �k = −exp

(
− �√

3

)
≈ −0.1630335348.

3. A challenge to numerical techniques

From pure mathematical points of view, (3) and (2) have an infinite number of solutions expressed by
(22). So, Eqs. (2) and (3) provide us with an example that has an infinite number of analytic solutions.
Note that, as shown inTable 2, the absolute value off ′′(0) of thekth solution decreases so rapidly with
respect tok that it becomes more and more difficult to numerically find outfk(�). Note that the value
|f ′′(0)| of the 10000th solution is equal to 2.522728359963× 10−7877, which is so small that current
digital computers cannot even express such a numerical result at such a high accuracy. Although, the
difference betweenf ′′

10+i(0) andf
′′
10+j (0) is less than 6× 10−8 for any positive integersi andj (i �= j ),

the two corresponding solutionsf10+i(�) andf10+j (�) are quite different as� is large enough. So, the
solutions of the nonlinear problem under consideration are verysensitiveto f ′′(0), and this sensitivity
greatly increases the difficulties to numerically find all solutions. It is an open question if our current
numerical techniques can find outall of these solutions. So, it is a challenge for current numerical and
analytic methods.
The first analytic solutionf1(�) agrees well with the numerical ones given by Kim et al.[4] and can

be observed in nature or in a lab. So, we are quite sure that the first solutionf1(�) is physically correct.
Although it seems that the solutions withf ′′(0) <0 have no physical meaning, frommathematical points
of view, this problem would be a challenge to current numerical techniques.
Note thatn = 2 is a special case of Eq. (1). It might be possible that there exist an infinite number of

solutions whenn = 3,4,5, . . . . If so, how can we find outall of these solutions by numerical and/or
analytic techniques?
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