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Abstract

In this paper we show that a nonlinear boundary-value problem describing Blasius viscous flow of a kind of
non-Newtonian fluid has an infinite number of explicit analytic solutions. These solutions are rather sensitive to
the second-order derivative at the boundary, and the difference of the second derivatives of two obviously different
solutions might be less than 18°°. Therefore, it seems impossible to find out all of these solutions by means of
current numerical methods. Thus, this nonlinear problem might become a challenge to current numerical techniques.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The two-dimensional Blasius viscous flow of power-law fluid on a semi-infinite flat pjanB] can
be described by the boundary layer equation

f///(f//)n—l + ff// — 0’ (l)
subject to the boundary conditions
fO)=f0)=0, f'(+00)=1, 2)

where the prime denotes the differentiation with respect to the simplicity variable numerical results
of f”(0) whenn =1 andn = 2 are given by Kim et al[4] and Akcay et al[5], as shown inTable 1
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Table 1

Numerical results off”’(0) whenn = 1 andn =2

n Value given by Kim et al[4] Value given by Akcay et a[5]
1 0.469599988 0.4696

2 0.726468 0.7274

The discontinuities in this equation were first investigated by T¢GjeHe pointed out the difficulty to
satisfy the outer boundary condition, not only when the power-law index is equakte=2), but also
when 1< n <2 andn > 2. He indicated to the discontinuities in the third and fourth derivatives of the
functionf for n > 1. Teipel[6] concluded also that the difficulties encountered are the result of the used
power-law model.

2. An infinite number of solutions whenn = 2

Let us consider a special non-Newtonian fluid, say 2. In this case, Eq. (1) becomes

f"+ Hr"=0, 3)
subject to the same boundary conditions (2). The above equation gives either
")+ f) =0 4
or
" =0. (5)
The solution of Eq. (4) can be generally expressed by
(/3 V3
fa(n) = C1 exp(—n) + exp(n/2) [Cz sin (711 +Cgcos| —n | | (6)
whereC1, C2, andCs are coefficients to be determined. Substituting the wall boundary conditions
fO)=f'(0=0
into (6), we have the solution
fa(n) = cgn), (7)
wherec is a coefficient to be determined and the funct¢gn) is defined by
V3 (/3
g(n) = exp(—n) — exp(n/2) COS<717 + V/3expn/2) sin - (8)

Obviously, the above solution does not satisfy the mainstream boundary condition

f/(+00) = 1.
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The solution of (5) is given by

() =Can+d, 9)
whereC4 andd are coefficients. Using the mainstream boundary condition

f(4o00) =1,
we haveCy4 = 1, therefore

fe) =n+d, (10)
which, however, does not satisfy the wall boundary conditions

f(0)=f'(0)=0.

So, neitherf,(n) nor fp(n) satisfies all of the boundary conditions (2).

Note thatf 4 () that satisfies the wall boundary condition can be regarded as an inner solutigig (and
that satisfies the mainstream boundary condition at infinity can be seen as an outer solution, provided
there exists such a marching pointat #* that

fatr™) = f(r), (11)
Faltr) = fplr™), (12)
A0 = fg(r®). (13)

Substituting (7) and (10) into the above expressions, we have

cg(n* =n"+d, (14)
cg' (") =1, (15)
§'(") =0, (16)

which determine the unknown coefficients! and the matching-poimt. Due to (16) and (8), the position
of the marching-points is given by the nonlinear algebraic equation

exp(—n™) + 2 exp(n*/2) cos(?:f‘) =0. 17)

The above equation can be rewritten as

exp<—gn*) =-2 cos(?n*) . (18)

Obviously, the curve

3 *
(= eXp(—E”I )
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and the curve

(=-2 cos(?:ﬁ‘)

have an infinite number of intersections. Thus, Eq. (18) has an infinite number of solutions
ny = 1.849812799190
n> = 5.441233355024
n3 = 9.068997534872
ny = 12.696595546547
ns = 16.324194278121

Note that
c=exp(~31°)

exponentially tends to zero. When- #g,
exp(—31) <2.32x 101,

so that the term on the left-hand side of (18) can be approximately regarded as zero and thus
= (ijél)n’

is a rather accurate solution of (18) o 6.
As long as the position; of thekth marching-point is known, we have by (15) and (14) the coefficients

k=6, (19)

1
Cck=——, 20
g'(m) (20)
gl
dy = — - 21
¢ g' () Tk (21)
Then, thekth solution is given by
_ kg when O<y < n,
fk(”l)— {’7+dk Whenn>”z’ (22)
wherek =1, 2, 3, ... . Mathematically, the function defined above satisfies the governing equation (3)

in the whole region &5 < + oo and all of the boundary conditions (2) mt= 0 and at infinity. The
first 10th solutions are as shownhig. 1L Note that the third-order derivatives at the matching point are
discontinuous. Teipdb] also pointed out this kind of discontinuation.
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Fig. 1. The curvef’ (i) of the first 10th solutions.

Table 2
Theoretical value off”(0) of thekth solution
k £0)
1 0.726467684935
3 1.85888832336% 102
5 4940909271256« 104
10 —5.69103954371%k 108
50 —1.763069354421% 10~39
100 —7.246305476685 10~ "9
200 —1.224083719056¢ 10~157
500 —5.90057821703% 10-3%
1000 ~8.116466274166c 10~ /88
2000 —1.535719227834 101575
5000 —1.04027059406% 103938
10 000 —2.522728359963 10~ 7877

Due to (22) and (8), we have the value 5f(0) of the kth solution, i.e.

1 (0) = 3cy.

471

(23)

The values off”(0) of some solutions are listed ifable 2 Note thatf”’(0) given by the first solution
f1(n) agrees with the numerical ones given by Kim ef{4]. Define

1 ) = f;"1(0)

k

= F1,0) = £/ ,0)

k>3.
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By means of (19), we have

T
lim & =—exp( —— ) ~ —0.1630335348
koo p( v@)

3. A challenge to numerical techniques

From pure mathematical points of view, (3) and (2) have an infinite number of solutions expressed by
(22). So, Egs. (2) and (3) provide us with an example that has an infinite number of analytic solutions.
Note that, as shown ifiable 2 the absolute value of”(0) of thekth solution decreases so rapidly with
respect td that it becomes more and more difficult to numerically find gut;). Note that the value
| £(0)| of the 10 000th solution is equal to522728359963« 10~ /877 which is so small that current
digital computers cannot even express such a numerical result at such a high accuracy. Although, the
difference betweegflf’oJri (0) ar_1d flor ;(0) is less than 6 10‘8_for any positiV(_e integersandj (i # j),
the two corresponding solution&oy; (1) and f10+; (1) are quite different ag is large enough. So, the
solutions of the nonlinear problem under consideration are sengitiveto f”(0), and this sensitivity
greatly increases the difficulties to numerically find all solutions. It is an open question if our current
numerical technigues can find aait of these solutions. So, it is a challenge for current numerical and
analytic methods.

The first analytic solutioryy () agrees well with the numerical ones given by Kim etj4].and can
be observed in nature or in a lab. So, we are quite sure that the first sofutigris physically correct.
Although it seems that the solutions witt{ (0) < 0 have no physical meaning, from mathematical points
of view, this problem would be a challenge to current numerical techniques.

Note thatn = 2 is a special case of Eq. (1). It might be possible that there exist an infinite number of
solutions whem = 3,4, 5, ... . If so, how can we find ouall of these solutions by numerical and/or
analytic techniques?
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