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Abstract

A new analytic approximate technique for non-linear problems, namely the homotopy analysis method, is employed to
propose an approach for free oscillations of self-excited systems. Different from perturbation methods on this topic, this
approach does not depend upon any small/large parameters at all and therefore is valid for free oscillations of all self-excited
systems. Besides, unlike other analytic techniques, this approach provides us with a convenient way to control the convergence
of approximation series and adjust convergence regions when necessary. Two examples are employed to illustrate the validity

and flexibility of this approach.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Perturbation method [1-11] is one of the most
widely applied analytic tools for non-linear prob-
lems. By means of perturbation techniques, a lot of
important properties and interesting phenomena of
non-linear problems have been revealed. Recently,
the singular perturbation techniques are considered
among the top 10 progress of the theoretical and
applied mechanics in the 20th century [12]. So, it
is out of question that perturbation techniques play
important roles in the development of science and
engineering.

Essentially, perturbation techniques are based on
the existence of a small/large parameter or vari-
able, which is often called perturbation quantity.
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Obviously, the existence of perturbation quantities is
a cornerstone of perturbation techniques. However,
it is perturbation quantity which brings perturbation
techniques some restrictions. First, it is impossible
that each non-linear problem contains such a pertur-
bation quantity. Secondly, even if perturbation quanti-
ties exist, perturbation techniques might fail to give a
satisfactory result. For example, both straightforward
perturbation method and singular perturbation tech-
nique failed to give a satisfactory theoretical drag for-
mula of a sphere in a uniform stream [13,14]. This is
mainly because, like other analytic methods, perturba-
tion techniques themselves cannot provide us with a
convenient way to control the convergence of approx-
imation series and adjust convergence regions when
necessary.

The dependence of perturbation techniques on
small/large parameters might be avoided by introduc-
ing a so-called artificial small parameter. In 1892,
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Lyapunov [15] considered the equation

dx

T A(t)x,

where A(t) is a time periodic matrix. Lyapunov [15]
introduced an artificial parameter m to replace this
equation by the equation

% = mA(t)x

and then calculated power series expansions over m
for the solutions. In many cases Lyapunov proved that
series converge for m = 1, and therefore one can put
in the final expression by setting m = 1. The above ap-
proach is called Lyapunov’s artificial small parameter
method [15]. This idea was further employed by some
scientists such as Karmishin et al. [16], who developed
the so-called d-expansion method. However, both the
artificial parameter method and J-expansion method
need a principal rule to determine the place where the
artificial parameter or ¢ should appear. To the best of
our knowledge, such a kind of rule has not been re-
ported. Besides, like perturbation techniques, both the
artificial small parameter method and the d-expansion
method themselves do not provide us with a con-
venient way to control the convergence of approxi-
mation series and adjust convergence regions when
necessary.

The idea of artificial parameter can be gener-
alized by the homotopy [17], a concept of topol-
ogy [18]. Based on the homotopy, many numerical
techniques, such as the continuation method [19]
and the homotopy continuation method [20], were
developed.

In summary, to the best of the author’s knowledge,
neither perturbation techniques nor artificial small pa-
rameter method, nor J-expansion method provide us
with a convenient way to control the convergence of
approximation series and adjust convergence regions
when necessary. Besides, the efficiency of approxi-
mating a non-linear problem has not been taken into
enough account. So, it is necessary to develop some
new, more efficient analytic methods.

A kind of analytic method, namely the homotopy
analysis method [21-28,13], was proposed by intro-
ducing an auxiliary parameter # to construct a new
kind of homotopy in a more general form. Unlike
all other analytic techniques, the homotopy analysis

method always gives a family of analytic results at any
given orders of approximation. The homotopy analysis
method has the following advantages:

1. it is valid even if a given non-linear problem does
not contain any small/large parameters at all,

2. it itself can provide us with a convenient way to
control the convergence of approximation series
and adjust convergence regions when necessary;

3. it can be employed to efficiently approximate a
non-linear problem by choosing different sets of
base functions.

In this paper, let us consider free oscillations of
self-excited systems, governed by

U(t) = fIU), U(1), U(1)],

where the dot denotes the derivative with respect to
the time ¢.

Free oscillations of self-excited systems have
limit-cycles which are independent upon initial condi-
tions. In general, limit cycles of self-excited systems
contain two important physical parameters, i.e. the
frequency w and the amplitude a of oscillation. So,
without loss of any generality, consider such initial
conditions:

120, (D

U)=a, U(0)=0, (2)

where « is the amplitude of the limit-cycle.

Note that it is unnecessary to assume the existence
of any small or large parameters in Eq. (1). Thus, the
proposed approach is rather general.

2. Basic ideas

Let t=wt denote a new time scale. Under the trans-

formation
t=owt, U(t)=au(r), 3)

the original Eq. (1) and its initial condition (2)
become

o*u" (1) = Flu,u' v, w,ad) %)
and
w0)=1, 1 (0)=0, (5)
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respectively, where the prime denotes the derivative
with respect to 7 and

flau(t), aw' (1), aw*u’ (1)]

a

F[uﬁ u/7 ul/? w’ a] =

- (6)

The limit-cycles of self-excited oscillation systems
are periodic motions with the period 7 = 27/w and
thus u(t) can be expressed by such a set of base
functions

{sin(mr),cos(mt) |m=0,1,2,3,...} (7)
that
400
u(t) =Y (o sinkt + By coske), (8)
k=0

where oy, f; are coefficients. This provides us with a
rule, called the rule of solution expression. This rule
is important in the frame of the homotopy analysis
method, as shown later.

Let wg,ap denote the initial approximations of
the frequency w and the amplitude a, respectively.
Considering the initial conditions (5) and the rule of
solution expression described by (8), it is obvious
that

up(t) = cos(t) 9

is a good initial guess of u(t). The homotopy anal-
ysis method is based on such continuous variations
d(, p), 2(p),A(p) that, as the embedding parame-
ter p increases from O to 1, ¢(z, p) varies from the
initial guess uy(7) = cos T to the exact solution u(7),
so does Q(p) from w, to the exact frequency w and
A(p) from ag to the exact amplitude a, respectively.
To ensure this under the rule of solution expression
described by (8), one chooses such an auxiliary linear
operator

52
S pi=at | U5 g p|  a0)
that
ZL(Cysint+ Cycost) =0, (11)

where C; and C, are coefficients. Note that the rule
of solution expression described by (8) plays an im-
portant role while determining the initial guess and
the auxiliary linear operator .. Then, due to (4), one

defines the non-linear operator

A9(z, p), 2(p),A(p)]

A2 a
() 5 F |6, PED,
o2
5D atpra)| (12)

Let pe[0,1] be the embedding parameter and % a
non-zero auxiliary parameter. One constructs such a
homotopy in a more general form

HP(t, p)ih, pl = (1 — p)ZL[P(z, p) — up(7)]

~hp NPz, p), 2(p),A(p)].
(13)

Setting #°[¢(z, p); h, p]=0, one has a family of equa-
tions

(I = p)Z[¢(, p) — uo(1)]

=hpN[d(z, p), Q(p), A(p)], (14)
subject to the initial conditions,
op(,
po.p=1, PEDN g (15)
T =0

Obviously, when p =0, Eqgs. (14) and (15) have the
solution

¢(7,0) = ug(t) = cos t. (16)

When p =1, Eqgs. (14) and (15) are exactly the same
as Egs. (4) and (5), provided

P(7, 1) = u(7), (17)
1) =o, (18)
A(l)=a. (19)

Therefore, as the embedding parameter p increases
from 0 to 1, ¢(z, p) varies from the initial guess
up(t) = cost to the solution u(t), so does Q(p)
from its initial guess wy to the exact frequency
w, and A(p) from its initial guess a¢ to the ex-
act amplitude a of the limit cycle, respectively. For
brevity, call (14) and (15) the zero-order deformation
equation.
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Assume that ¢(z, p),Q2(p),A(p) are analytic
in pe[0,1] so that the so-called deformation
derivatives:

*¢(1, p) d*Q(p)
k 5 k
M([) ](T) - a % 5 (1)5] - d 7 5
p p=0 p p=0
d*A(p)
[k p
gl = 228 (20)
0 dpk p=0

exist. Then, ¢(z, p), 2(p),A(p) can be expanded in
the Maclaurin series of p as follows:

400
$(r.p)= > u()pt, (21)
k=0
+00
Qp)=>_ o pt, (22)
k=0
+00
A(p) =) aph, (23)
k=0
where
1 &(z, p) 1 d*Q(p)
Mk(T) - E apk - 5 Wf = E dpk o s
1 dkA(p)
W= g Y (24)

Notice that series (21)—(23) contain the auxiliary
parameter i, which determines their convergence
regions. Assume that # is properly chosen such
that all of these Maclaurin series are convergent at
p = 1. Thus, due to (17)—(19), one has at p =1
that

+oo

u(t)=> w(v), (25)

k=0

w= Zwk, (26)

a=Y a. 27

The results at the mth-order approximation are given
by

u(t) = Y u(), (28)
k=0
o~ Z Wy, (29)
k=0
ax> a. (30)
k=0

Differentiating & times Eqgs. (14) and (15) with re-
spect to p and then setting p = 0 and finally dividing
them by £!, one gains the governing equation of u(7),
ie.

Llug(t) — prur—1(7)] = iRk (1), (31)
subject to the initial conditions
up(0)=0, u(0)=0, (32)
where
1 M 9(x, p). Q(p).A(p)]
Rk(f) - | f—1
(k—1)! op =0
(33)
and
0, k<l,
Yk = 34
! 1, k>1. (34)

Notice that both w; and a; remain unknown right now.
Due to the rule of solution expression described by
(8) and the definition (10) of ., solutions of (31) and
(32) should not contain the so-called secular terms
7sin(t) and 7 cos(t). To ensure so, the right-hand side
term Ry (7) of (31) should not contain the terms sin t
and cos 7, i.e. the coeflicients of sint and cos T must
be zero. So, rewrite

(k)
Ri(7) = Z [ck,n cos(nt) + di. , sin(nt)], (35)

n=1

where the integer ¢(k) is a function of £ and the co-
efficients

2 s
Chon = — / Ri(7)cos(nt)dr,
T Jo

2 Y
din= 7/ Ri(7)sin(nt)dt
T Jo
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become zero when n > ¢@(k). Then, one gains two
algebraic equations

ck1(Wo, W1, .., Wk—1,a0,a1,...,8k—1) =0 (36)
and
dr1(wo, W1, ..., Wk_1,a0,a1,...,a5-1) =0, (37)

which determine w;_; and a;_; (k=1,2,3,...). The
above two algebraic equations are often non-linear for
oy and ay when k£ = 1, but always linear otherwise,
as proved by Liao [21]. Notice that when k& > 1 both
(31) and (32) are always linear. So, after solving wy_
and a;_1, it is easy to gain its solution

o(k) .
_ Cr.n cos(nt) + di,, sin(nt)
u(2) = guug 1 (1) + g prT

4+ Cicost+ CysinT, (38)

where the two integral coefficients are deter-
mined by initial conditions (32). In this way, one
can gain @;_1, a;,—1 and wu(t) (kK = 1,2,3,...),
successively.

Note that, to gain uniformly valid approxima-
tions, some perturbation techniques were developed
to avoid the appearance of secular terms in perturba-
tion solutions. This kind of technique goes back to
some scientists in the 19th century, such as Lindstedt
[29], Bohlin [30], Poincaré [31], Gyldén [32] and
so on. The idea was further developed by Lighthill
[33,34], Malkin [35], Kuo [36,37], Tsien [38] and
so on. The rule of solution expression can be seen
as a kind of generalization of this idea. It is under
this rule that the auxiliary linear operator ¥ de-
fined by (10) and the initial guess uo(t) = cost are
chosen, and besides w;_1 and a;_; (kK =1,2,3,...)
are determined. So, the rule plays a very impor-
tant role in the frame of the homotopy analysis
method.

3. Some examples

In this section, the validity of the proposed approach
is illustrated by two examples.

3.1. Example 1

First, consider the famous Van der Pol’s equation
[39,40]

Ut)+ U(t) = ¢[1 — UXHO)]U(1). (39)

The corresponding perturbation approximation of the
frequency

] 17
o] 2 s
@ 6% T3mt

678890

Ol 4
5096079360 (40)

is convergent in a quite small region 0 < & < 2.
Under transformation (3), Eq. (39) becomes

0" (7) + u(t) = e[l — a*u® ()]’ (7). (41)

All other related equations are the same as defined
in the Section 2, except the term R in Eq. (31) which
becomes due to (33) that

k—1 n
Ri(m)= 1 () | D wjony | +ui(2)
n=0

J=0

k—1
—¢ Z wnu;c—l—n(f)
n=0

k—1 k—1—n
b ( > w<>>
=0

n=0 i

n J n—j
XZ (Z a,aj_,> (Z usun_j_s> . (42)
j=0 =0 s=0

Using symbolic calculation software Mathematica
4.1, it is easy to gain approximations at the first sev-
eral orders. It is found that the frequency w and the
amplitude a at the mth-order of approximation can be
expressed by

wr g+ Y ey b, (43)
i=1 J=i
m—1 m
azaoJrZ.SZi Z BEIH, (44)
i=1 J=i+1
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Fig. 1. Comparison of the frequency of the 20th-order homo-
topy analysis approximation with the exact result of Example 1.
Symbols: exact solution; solid line: the perturbation result (40)
and homotopy analysis approximation when A = —1; dash line:
fi=—1/2; dash-dot line: #=—1/5; dash-dot-dot line: [10/10] Padé
approximation of perturbation result (40).

respectively, where the coefficients o&ﬁ;,j s ﬁn/ de-
pend upon m for given i,j, and wy = 1, ag = 2
are given by solving a set of non-linear algebraic
equations
1~ =0, eomp— ga%wozo. (45)
Note that results (43) and (44) contain the auxiliary
parameter 7. It is found that convergence regions of
the approximation series are dependent upon #. The
comparison of the frequency w at the 20th-order of
approximation with the numerical results is as shown
in Fig. 1, where # = —1,—1 and —1, respectively.
Notice that # = —1 gives exactly the same conver-
gence region as the perturbation result (40). However,
as f (h < 0) closes to zero, the convergence region
becomes larger and larger, although higher-order ap-
proximations are necessary to gain accurate enough
results, as reported in our previous publications
[23-28,13]. Therefore, A provides us with a conve-
nient way to control the convergence of approxi-
mation series and adjust convergence regions when
necessary.
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Fig. 2. Comparison of the frequency of the 20th-order homo-
topy analysis approximation with the exact result of Example 1.
Symbols: exact solution; solid line: £ = —1/4/1 + ¢Z; dash line:
h=—1/v1+ 4¢2; dash-dot line: 7 = —1/+/1 + 8¢2; dash-dot-dot
line: [10/10] Padé approximation of perturbation result (40).

Note that one has great freedom to choose the
auxiliary parameter #. Certainly, # can be chosen
as a function of &. Due to (43) and (44), the fre-
quency @ and the amplitude a are even functions
of ¢. This implies that # should be an even function
of ¢, too. Consider three different functions of # as
follows:

1
. — (46)
V14 ye?
1
- 47
1+ vl (47)
and
) G
= exp|-—— 4
e |- | (48)

respectively, where y is a positive constant. As 7y
increases, the convergence regions of the frequency
o become larger and larger, as shown in Figs. 2—4.
Notice that all of the 20th-order approximations
agree with the exact result in larger convergence re-
gions even than the [10/10] Padé approximation of
the corresponding 20th-order perturbation result, as
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Fig. 3. Comparison of the frequency of the 20th-order homo-
topy analysis approximation with the exact result of Example 1.
Symbols: exact solution; solid line: # = —(1 + |¢[)~!; dash line:
fi=—(1+2le|)~!; dash-dot line: #i=—(1+ 3|e|)~'; dash-dot-dot
line: [10/10] Padé approximation of perturbation result (40).
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Fig. 4. Comparison of the frequency of the 20th-order homotopy
analysis approximation with the exact result of Example 1. Sym-
bols: exact solution; solid line: = —exp[ — &2/(1+¢*)]; dash line:
hi=—exp[—&?/(1+¢%/2)]; dash-dot line: i=—exp[ —&?/(1+£2/4)];
dash-dot-dot line: [10/10] Padé approximation of perturbation
result (40).

shown in Figs. 2—4. Note also that the perturbation ap-
proximation of the frequency is convergent only in a
quite small region 0 < ¢ < 2. Thus, the auxiliary pa-
rameter # indeed provides us with a convenient and
flexible way to control the convergence of approxi-
mation series and adjust convergence regions, when
necessary.

3.2. Example 2

Furthermore, consider (see [4, p. 135])
U(t)+ U(t) — e[l — UX()]U(t) + eU(t) = 0. (49)

The corresponding perturbation approximation of the
frequency

3 7 143 11291
Ml e L 2 &S o
ORI TR T e
82919 oS 46617401
1536 221184 (50)
is convergent in a quite small region 0 < ¢ < 1/2.
Under transformation (3), Eq. (49) becomes
o*u”" (1) + u(t) — o[l — a*u® (7)) (7)
+eatu’ (1) = (1)

All other related equations are the same as defined in
the Section 2, except the term Ry in Eq. (31) which
becomes due to (33) that

k—1 n
Re(D) =Y w1 (1) [ D wjon | + e i(7)
n=0 Jj=0

k—1
—e ) outl__,(7)
n=0

k—1 [fk—1—n

+SZ Z ity _p—i(T)

n J n—j
X E + § araj—r § usun—j—s
Jj=0 r=0 s=0
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k—1 n J
+é Z up—1-n(7) Z (Z araj—r)
n=0 Jj=0 \r=0

n—j
X (Z AT js> . (52)
s=0

Similarly, it is found that the frequency w and the
amplitude a at the mth-order of approximation can be
expressed by

m m ﬁi m+-2i
oo | S+ (1) S .
j=0 i=1 0/ j=2
(53)

2m—1

Ny L
a~ag+ g (wé’) E oI, (54)
i=1 j=1

respectively, where the coefficients yi;,j and o5/ depend
upon m for given i, j, and

wy=V1+ 3¢,

are given by solving a set of non-linear algebraic equa-
tions

a0=2 (55)

ewonaéwO:O, 1+%ea57w%:0. (56)

Note also that approximation (53) and (54) con-
tain the auxiliary parameter #. It is found that in the
case of constant 7 one gets the same qualitative con-
clusion as mentioned before, i.e. the closer # (A < 0)
is to zero, the larger the convergence region of the
series of the frequency, as shown in Fig. 5, where
f = —1,—3 and —, respectively. Notice that when
h = —% the frequency at the 10th-order of approx-
imation can give good approximations in a region
considerably larger than that of perturbation results,
and is even better than the corresponding [5/5] Padé
approximation.

Similarly, # can be a function of . It is found that
when

1

the frequency at the 10th-order approximation agrees
with numerical results in the region 0 < & < 500,

w
L2 LML e

Fig. 5. Comparison of the frequency of the 10th-order homotopy
analysis approximation with the exact frequency of Example 2.
Symbols: exact solution; dash line: a=—1; dash-dot line: A=—1/2;
solid line: & = —1/4; dash-dot-dot line: perturbation result (50);
long dash line: [5/5] Padé approximation of the perturbation
expression (50).

which is nearly 1000 times larger than the perturbation
result (50), as shown in Fig. 6. It is very interesting
that, when setting = —(1+¢/2)~"2 in (53) and then
expanding it in a power series of ¢, one gains the same
series as the perturbation power series (50). This is
reasonable, because the power series of a given func-
tion is unique. Notice that the power series is only one
kind of base functions. However, it is a fact that a given
function can be represented more efficiently by a bet-
ter set of base functions. This is the reason why when
fi=—(1+¢/2)~"/? the approximation (53 ) converges
in a region 1000 times larger than that of the perturba-
tion power series (50) and is even much better than the
corresponding [5/5] Padé approximations, as shown in
Fig. 6.

All of these clearly illustrate that the auxiliary
parameter 7 indeed provides us with a convenient
and flexible way to control the convergence of ap-
proximation series and adjust convergence regions
when necessary. Thus, the auxiliary parameter 7
plays an important role in the homotopy analysis
method.
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Fig. 6. Comparison of the frequency of the homotopy analysis
approximation when # = —1/ \/ 1 + &/2 with the exact frequency
of Example 2. Symbols: exact solution; dash line: 4th-order ap-
proximation; dash-dot line: 6th-order approximation; dash-dot-dot
line: 8th-order approximation; solid line: 10th-order approxima-
tion; long dash line: [5/5] Padé approximation of the perturbation
expression (50).

4. Conclusion and discussion

In this paper the homotopy analysis method is
employed to propose a new analytic approximate
approach for limit-cycles of free oscillations of
self-excited systems. Its validity is illustrated by two
examples.

Notice that the rule of solution expression de-
scribed by (8) plays an important role in the frame of
the homotopy analysis method. It is under this rule
that the auxiliary linear operator ¥ and the initial
guess uy(t) = cos T are chosen, and besides w;_; and
ar—1 (k=1,2,3,...) are determined.

Different from all perturbation techniques on this
topic, the proposed approach is valid even if a
non-linear problem does not contain any small/large
parameters. Thus, the proposed approach is rather
general. Besides, unlike al/l other analytic techniques,
the proposed approach provides us with a convenient
way to control the convergence of approximation
series and adjust convergence regions, when neces-
sary. This is mainly because, unlike a/l other analytic
techniques, the homotopy analysis method always

gives a one-parameter family of analytic results in the
auxiliary parameter %, and besides one has great free-
dom to choose the value of . However, it is still not
completely clear how to choose a proper (or better)
value of # for any a given non-linear problem. Thus,
further investigation and improvement are necessary.
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