
S. J. Liao1 

Institute of Shipbuilding, 
University of Hamburg, 

Laemmerseith 90, 
D-2000 Hamburg 60, 

Federal Republic of Germany 

A Second-Order Approximate 
Analytical Solution of a Simple 
Pendulum by the Process Analysis 
Method 

In this paper, a new kind of analytical method of nonlinear problem called the 
process analysis method (PAM) is described and used to give a second-order ap­
proximate solution of a simple pendulum. The PAM does not depend on the small 
parameter supposition and therefore can overcome the disadvantages and limitations 
of the perturbation expansion method. The analytical approximate results at the 
second-order of approximation are in good agreement with the numerical results. 
They are compared with perturbation solutions, and it appears that even the first-
order solutions are more accurate than the perturbation solutions at second-order 
of approximation. 

1 Introduction 
It is difficult to solve nonlinear problems, either numerically 

or theoretically. Traditionally, iterative techniques were used 
to find numerical solutions of nonlinear problems, but nearly 
all iterative methods are sensitive to initial solutions. Thus, it 
is not easy to obtain converged results in cases of strong non-
linearity. On the other side, as mentioned by Nayfeh (1980) 
and O'Malley (1974), the perturbation expansion method is 
widely used to analyze simple nonlinear problems. It is well 
known that the perturbation method is based on small or great 
parameters. But, unfortunately, not every nonlinear problem 
has such small or great parameters. And it also seems difficult 
to decide whether or not a parameter is small or great enough. 

For example, it is well known that the motion of a simple 
pendulum is periodical, which can be described mathematically 
as follows: 

dH_ 
dt2 + o>0 sin0 = 0 

0(0 = 0 for t = Q (1) 

9'(0 = 0 for t = 0 

where 0 is the angle of swing, t is the time, /3 is the initial angle 
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of swing, o>0 = /-; here, g is the gravity acceleration and / 

is the length of the simple pendulum. 
It is easy to know that 10(01 ^(3. If the initial angle /3 is 

small enough, then 0 is a small quantity and sin(0)« 0 is a good 
approximation; thus, the above equation has the solution 

with the period 

0(0 = (8 cos («oO 

T0 = —. 
O)0 

(2) 

(3) 

But, if /3 is not small, the above solutions are not accurate. 
For example, when (3 = 5TT/9, the numerical result of the 
period is \.232T0. Therefore, higher-order approximate so­
lutions should be given in this case. However, this is not easy, 
because Eq. (1) is nonlinear and has no small parameters. It 
seems doubtful to be able to give a good perturbation ap­
proximation of 0(0 and its corresponding period, especially in 
the case of the great initial angle /3. 

As mentioned by Ortega and Rheinboldt (1970), the con­
tinuous mapping technique, or so-called homotopy method, 
has been generally used to widen the domain of convergence 
of a given method or as a procedure to obtain sufficiently close 
starting points. The continuous mapping technique embeds a 
parameter that typically ranges from zero to one. When the 
embedding parameter is zero, the equation is one of the linear 
system. When it is one, the equation is the same as the original. 
Then, one can iterate, numerically along the solution path, by 
incrementing the imbedding parameter from zero to one; this 
continuously maps the initial linear solutions into the solutions 
of the original equation. Note that iterative techniques are 
used at each step along the solution path if the equation is 
nonlinear. 
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If we derive the continuous mapping with respect to the 
imbedding parameter we will obtain the corresponding linear 
equations of this kind of derivatives. This is an interesting 
property of continuous mapping and a pure mathematical proof 
can be given. By means of this property of continuous map­
ping, a kind of general numerical method for nonlinear prob­
lems, called the finite process method (FPM), has been 
described by Liao (1991a, 1991b). The finite process method 
can avoid the use of iterative techniques to solve numerically 
nonlinear problems and it is insensitive to the initial solutions. 
Therefore, it can overcome the disadvantages and limitations 
of iterative techniques. 

Based on the same property of continuous mapping, an 
analytical method for nonlinear problems, called the process 
analysis method (PAM), has been derived. It is interesting that 
this kind of analytical method does not depend on small or 
great parameters and therefore can overcome the limitations 
of perturbation techniques. 

In this paper, the basic idea of the process analysis method 
is described and examined by using a simple pendulum as an 
example. The main purpose of this paper is to give a kind of 
general analytical method for nonlinear problems, which is 
independent on small or great parameters . 

2 Basic Ideas o f the Process Analys i s M e t h o d 

Let 

2TT 

T 

and 

Z = u>t 

(4) 

(5) 

where T is the period and o) is the frequence of a simple 
pendulum, respectively. 

Then Eq. (1) is transformed into 

dz2 

0(z) = /3 for ? = 0 

T+A2sin0 = O 

(6) 

0'(z) = O forz = 0. 

Here, 

o0 (7) 

denotes the non-dimensional frequence or period of a simple 
pendulum. 

A kind of continuous mapping, 0(z)~0(z;p),X-~X(p) can be 
constructed as follows: 

^ + AV)0tep) 

+p\ 2(p) {sm[6(z;p)] - 6(z;p)} = 0 
(8) 

e(z;p) = P f o r z = 0 

dd(z;p) 

dz 
= 0 forz = 0 

where/? € [0, 1], called the process-independent variable or 
imbedding variable. 

For simplicity, call the continuous mapping 6(z;p) and \{p) 
process, or more precisely, zero-order process. Then, Eq. (8) 
could be called the zero-order process equation. 

When p = 0, from zero-order process Eq. (8), one has the 
initial equation: 

« ^ ( 0 ) * t e 0 ) = 0 

0(z;O) = /3 forz = 0 

50(z;O) 

(9) 

dz 
= 0 forz = 0. 

Denote X0 = X(0) and 0o(z) = 0(z;0). For simplicity, select X0 

= 1.0, called the initial solution of X(p). It is easy to know 
that the above linear Eq. (9) has the solution 

0o(z) = /3cos(z). (10) 

When p = 1.0, from the zero-order process Eq. (8), one 
has the final equation 

d26(z;1.0) 

dz2 - + Xll.O)sin0(z;l.O) = O 

0(z;l.O) = /3 for z = 0 

d0(z;1.0) 

(11) 

dz 
= 0 for z = 0. 

Equations (11) are the same as (6). Denote that 0/z) = 0(z; 1.0) 
and X/= X(l .0), called the finalsolution. It is easy to understand 
that 9j(z) and \f are just what we want to know. 

From the above analysis, we can see that the zero-order 
process Eq. (8) gives a kind of relation between the initial 
solutions 0O = |S cos(z), X0 = 1.0 and the final solutions 6f, 
X/. But this kind of relation is nonlinear, because the zero-
order process Eq . (8) is generally a nonlinear one. In the fol­
lowing part of this section, a linear relation between 0O, X0, 
and Of, Ay will be introduced and used to give a kind of solution 
at the second-order approximat ion. 

Define 

as the Ath-order 

Suppose: 

e[k\z;p)-

\lk](P)-

dk6(z;p) 

dp" 

dk\(p) 

dpk 

process derivative of d(z\p) and \{p), 

(12) 

(13) 

respec-

1 9(z;p), X(p) have definition inp € [0, 1], 0 < z < o ° and 
2 there exist 6[k] (z;p) and \[k](p) inp € [0, 1], 0 < z < o o for 
A:>1 

then, according to Taylor 's theory, 60(z), X0 and 0 /z ) , X/have 
the following relations: 

k=\ Kl 
p = 0 

k=\ Kl 

(14) 

(15) 
/) = 0 

where A:! = 1 x 2 x • • • x(k- l ) x k is the factorial of k. 
6{k\z;p),\m(jD)a.tp = 0 can be obtained in the following way. 

Deriving the zero-order process Eq . (8) with respect to p, 
one can obtain the first-order process equation as follows: 
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^ ^ + A2(p)0" W ) + 2\(P)\[1](PMZ;P) 

+ \2(p){sm[0(z;p)]-d(z;p)} 

+ 2p\(p)\ll](p) I sinWzw)] - e(z\p) )• 

+p\2(p) I cos6(z;p) - 1) em(z\p) = 0 

em(z;p) = 0 forz = 0 

d6n](z;p) 

a,„ = _ , — — — (AM>1). (25) 

(16) 

dz 
- = 0 forz = 0. 

When p = 0.0, from first-order process Eq. (16), one has 

dz1 

= Aijf0o(z)-sin0o)-2AoA[11(O)0o 

0[1](z;O) = O forz = 0 

30[11(z;O) 

(17) 

dz 
= 0 forz = 0. 

2AM(AM+1) 

Deriving the first-order process Eq. (16) with respect to p 
and then let p = 0, one can obtain the second-order process 
equation at p = 0 as follows: 

= 4A[11(0) {0O - sin0o) + 2 {1 - cos0o)0mteO) 

- 4A[11(O)0[l](z;O) _ 2 {(A[11)2 + A[21(0)) 0O (26) 

0[21(z;O) = O forz = 0 

ddl2\z;0) . . _ 
= 0 forz = 0. 

dz 
The above equation is linear with respect to 0[21(z;O). Sub­

stituting (18), (19), (22), (23) in (26) and eliminating the secular 
terms, we have 

2 J2(0)J3(p) 
A0

21 = 3 

It can be derived that 
00 

sin(0o) = 2 ^ ] ( - l ) " 7 2 m + 1(/3)cos(2w + \)z 
m = 0 

and 

cos(0o) = MP) + 2 J] ( - l)"72m(/3)cos(2wz) 

where, /„((3) is first-sort of Bessel function denoted as 

1 MP) 
2 H 

1 

4)3 

(18) 

(19) and 

0 

•ZiOT | JW-J(M 
2 

2ml3 

y (-l)m/2m + l«3) 
-*—' AM(AM+1) 

m = 1 v 7 

A M — 1 AM — 1 
(27) 

^)=S 
(- l )*(l3/2)2 A r +" 

kl(k+n)l ' 

Substituting (18) in (17), one has the first-order process 
equation at p = 0 as follows: 

d26l[\z;0) 

0[21(z;O) = 2 bm cos (2AM + l)z 
m = 0 

Oo oo 

(20) + Z J Z J
 c™ c o s [ 2 ( " + w ) + 1 ] z 

m=\ n=\ 

\ 

az2 - + 0m(z;O) = !)3-2/1(/3)-2/3Ao11) cos(z) 

-2 2(-l)m^m+l(«COS(2AA7+l)z 

Z J I Z J C?„ ,„COS[2(M-AM)+1]Z (28) 

0[11(z;O) = O, f o r z = 0 

I 90"1fe;Q) n , . 
\ — = 0, forz = 0. 

dz 
In order to let the above Eq . (21) have finite solution (i.e., 

the secular terms should be eliminated), it must be satisfied 
that 

(21) 
where 

0 0 OO 0 0 I 0 0 

b°= - Z J b">~ Z J Z J C»-"~ Z J Z J d»»> (29) 
m=1 m=\ n=\ m~\ \ n=\ 

\n ^ m - 1/ 

A11!(0) = 1 JM 
b J-ITJ^+M L 4/.C8) i 

2AAZ(A«+1) (_ 0 m(m+X) 

(- l )mf lo[ /2«( |8)- /2»+2C8)] 

/i08) JbOS) 

=S(-u*+' 
o2 

l 

0 2 

( A M > 1 ) (30) 

k\(k+\)\ 
( A M > 1 , M > 1 ) (31) 

16 24 \2j 

Thus, the /inear differential Eq. (21) has solution 

(22) dm 

2m(m+ 1) 

( - l ) ' " + V 2 m ( / 3 ) / 2 n + 1(ffl 
'"" 4M(«+1)(M + AM)(« + AM+1) 

( - l ) ' " + "./2m(/3)J2n + 1()3) 
4M(M + 1)(M - AK)(M - AM + 1) 

( A M > 1 ; M > 1 , n^m, n^m- 1). (32) 

0 [ 1 1 t e O ) = 2 omcos(2AM+l)z, (23) 

where 

2.1 Approximation of Frequence w. According to 

wo 
£»(P) = 

«0 =- s«« 
UP) 

(33) 

(24) and Taylor ' s theory, one has the first-order approximation of 
frequence co as 
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COi=CO0 

UP) 

x'"(/?) 
x2(/?) p = 0 

= ^o( l -X^) 

and second-order approximation of frequence as 

f_l_ Xm(p) , [Xm(/?)]2 Xpl(/?)> 

(34) 

0)2 = ^ 0 
(X(p) x2(/?) X3(/?) 

= CJ0 

"2X2(p)j 
p = 0 

1 
X0

2' + (A0'>)2 . (35) 

although the zero-order process Eq. (8) is generally nonlinear. 
Using process derivatives, a nonlinear problem with respect to 
6(z) can be transformed into an infinite number of linear prob­
lems with respect to 6lk\z;p) (k=\, 2, 3, • • •, oo) at/? = 0. But, 
only a finite number of linear problems with respect to d[ \z;p){k 
= 1,2, • • •, np) at p = 0 can be solved. It means that a 
nonlinear problem can be approximated by a finite number of 
linear problems. One would say that a nonlinear problem could 
be discretized into np linear problems with respect to Arth-order 
process derivatives [k = 1,2, • • •, np). The greater np is, the 
more exact this approximation is. These are the basic ideas of 
the Process Analysis Method. 

2.2 Approximation of Period T. According to T/T0 = 
u>0/o>, one has the first-order approximation of period T as 

1 ]\ 
7-o-l-Xi" 

/52 i M 4 

and the second-order approximation of period as 

T2 1 

To I - W - V + M 1 ) 2 

(36) 

(37) 

2.3 Approximation of 8(t). Q(t) at first-order of approx­
imation is 

'i(0 = (13 + a0) cosz + 2 am cos(2w + \)z 

= ((3 + a0) cosz - —-— cos(3z) + —— cos (5z) 
12 

MP) 
24 

cos (7z) + • 
1 //3 

192 96 \ 2 

192 90 V2,' + 

5 

cos (3coi0 

COS (blif) 

1 
+ • • • cos (5o,0 + 

^1440 \2y 

and 6(t) at second-order of approximation is 

62(t)=U + a0 + -A cos(co 20+2 \amJr 

oo oo 

(38) 

COS [(2/77 + l)w20 + 2 5 ] ^ COS[2(/7 + 777) + l](u2t) 
m = 1 /i = 1 

s s cos[2(«-/7j) + l](w20- (39) 

\ii7±m- 1/ 

As the last part of this section, let us discuss simply the 
expressions (14), and (15). The expressions (14), (15) describe 
a kind of relation between the initial solution 0O =fi cos(z), X0 

= 1.0 and the final solution 8f, X/by means of/cth-order process 
derivatives 8[k](z;p) and Xw(p) at/? = 0. The first-order process 
Eq. (17) and the second-order process Eq. (26) are linear with 
respect to 0[11(z;O) and 0[2,(z;O), respectively. One can prove 
easily that the /tth-order process equation (k = 1, 2, 3,- • •) is 
alway linear with respect to 9lk'(z;0). Therefore, 9[>](z;0), 
6l2](z;0),• • •, 6m (z;0),• • •, can be obtained without great dif­
ficulties. It means that the expressions (14), (15) give a kind 
of linear relation between the initial solution and final solution, 

3 Comparisons to the Numerical and Perturbation 
Results 

In order to examine the solutions given by PAM, it is val­
uable to compare them to the numerical results and pertur­
bation solutions at the same order of approximation. 

The original Eq. (1) can be solved numerically by means of 
Runge-Kutta's method. In numerical computation we select 
At = 0.0001 second and use double precision variables in the 
computer program. 

On the other side, substitute 

sin(0) = 0 - ^ + j y + . . . (40) 

in (6) and suppose that 0 be small enough and 6 and X could 
be described, respectively, as 

6>=(3fe(U,+/3e,"+/3/e(/,+ o2A(2) _ (41) 

(42) X=1+/3A (" + /32A (2)+--., 

then, we can obtain 

(a) perturbation solutions at first-order of approximation: 

0(/) = 0 cos (woO (43) 

7-Q 
(44) 

(b) perturbation solutions at second-order of approximation: 

0(0= 0 + 
192 

w0t 

1+T6 

T0 16 

193 
(25) 

(46) 

3.1 Comparison of Nondimensional Period T/T0. The 
numerical and analytical results show that the nondimensional 
period T/T0 of a simple pendulum is only dependent on the 
initial angle 13. The detailed comparison of numerical and an­
alytical results of T/TQ obtained, respectively, by PAM and 
the perturbation method is given in Table 1. It seems that PAM 
solutions, even at first-order of approximation, generally agree 

Table 1 Comparison of theoretical and numerical results of T/T0 

a 
20° 
30° 
40° 
50° 
60° 
70° 
80° 
90° 
100° 
110° 
120° 
130° 

numerical 
method 

1.008 
1.017 
1.031 
1.050 
1.073 
1.102 
1.138 
1.180 
1.232 
1.295 
1.373 
1.-171 

first-orde 
1.008 
1.017 
1.031 
1.048 
1.070 
1.096 
1.127 
1.162 
1.201 
1.246 
1.296 
1.351 

PAM 
second-order 

1.008 
1.017 
1.031 
1.050 
1.073 
1.101 
1.136 
1.177 
1.225 

i 1.282 
1.347 
1.424 

leruirbation method 
(second-order) 

1.008 
1.017 
1.030 
1.048 
1.069 
1.093 
1.122 
1.154 
1.190 
1.230 
1.274 
1.322 
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better with the numerical results than perturbation solutions 
at second-order of approximation. Even in the case of a great 
initial angle 0 = 130 deg, the second-order PAM solution can 
also give a good enough approximate value of a period, but 
the perturbation solution at the same-order of approximation 
has about a ten percent relative error. 

3.2 Spectrum Analysis. It is well known that the solution 
0(0 of the original Eq. (1) is a periodical function. So, 0(0 can 
be expressed in the form of a Fourier series. 

Table 2 Spectrum analysis: Numerical result 

13 

AJP 
A2//3 

A3lf3 
A, IP 
A5//3 
Ae//3 

Ail/3 

30° 

1.001 

3.29E-6 

-1.45E-3 

5.90E-7 

3.43E-6 

2.25E-7 

-1.61E-7 

60° 

1.006 
-2.21E-7 

-6.14E-3 

-8.39E-8 

6.62E-5 
-6.85E-8 

-7.84E-7 

90° 

1.015 
4.77E-S 

-1.53E-2 

-4.24E-8 

3.96E-4 

-4.86E-8 

-1.22E-5 

120° 

1.030 

3.38E-6 
-3.20E-2 

1.43E-7 

1.65E-3 
1.41E-7 

-1.01E-4 

Table 3 Spectrum analysis: First-order PAM solutions 

13 
A, 113 
A3/0 
A, IH 
Ar/P 

30° 
1.001 

-1.40E-3 
1.61E-6 

-1.32E-9 

60° 
1.005 

-5.33E-3 
2.49E-5 
-8.23E-8 

90° 

1.011 
-1.10E-2 
1.19E-4 
-8.95E-7 

120° 
1.017 

-1.72E-2 
3.47E-4 

-4.70E-6 

Table 4 Spectrum analysis: Second-order PAM solutions 

13 
A, IP 
A3/P 
A„IP 
A-,10 

30° 
1.001 

-1.45E-3 
1.96E-6 

-1.88E-9 

60° 
1.006 

-6.03E-3 
4.57E-5 
-2.22E-7 

90° 
1.014 

-1.41E-2 
3.29E-4 

-4.27E-6 

120° 
1.025 

-2.60E-2 

1.34E-3 
-3.57E-5 

According to (38) and (39), the PAM solutions, at both first 
and second-order of approximation, can be written in the form 
of 

00 

0(O=XM2*- iCOs[ (2£ - lM] (*=1 ,2 , - - - ) . (47) 

Numerically, we have 
, 7 / 2 

0(0 cos(nwt)dt *-H ( n = l , 2 , - - - ) (48) 

where the numerical solution of 0(0 is used, and thus a nu­
merical integral over [0,772] is needed. 

The numerical values Ak(k = 1, 2,•••) and their corre­
sponding analytical values at first and second-order of ap­
proximation given by PAM are shown as Table 2, Table 3, 
and Table 4, respectively. These results show that the second-
order PAM solutions are in better agreement with the nu­
merical solutions than the first-order PAM results. Note that 
the analytical values of A2/<;(k = 1,_2, •—) are zero and the 
corresponding numerical values of A2, AA, and A6 given in 
Table 2 are so small that they can be as the numerical errors 
in the integral. It appears that PAM captures the leading non­
linear harmonics found in the numerical solutions. 

The numerical results and analytical solutions at second-
order of approximation given, respectively, by the perturbation 
method and PAM, in case of j3 = 57r/9, are shown Fig. 1. 

The analytical and numerical values of Ak{k> 1) are so much 
smaller than A\ that 

0(O = (3cos(o)2O (49) 

can give a good enough approximation of the original Eq. (1). 
This simplified expression gives essentially the same results as 
the second-order PAM solutions (39). 

-- NUMERICAL RESULT 

--0TH ORDER APPROXIMATION 

--1TH ORDER APPROXIMATION 

--2TH ORDER APPROXIMATION 

T INITIAL ANGLE 100 DEGREF ) .1 

TIME 
Fig. 1 Comparison of the analytical solutions at second-order of ap­
proximation to the numerical results 
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With comparison of expressions (36), (38), to expressions 
(46) and (45), it appears that the first-order PAM solutions 
include the terms of the perturbation solutions at second-order 
of approximation. 

4 Conclusion and Discussion 

In this paper, the basic idea of a new kind of analytical 
method for nonlinear problems, called PAM, is described and 
used to give a second-order approximate solutions of a simple 
pendulum. These solutions are compared to the numerical and 
perturbation solutions. The comparison shows that even the 
first-order PAM solutions agree better with the numerical so­
lutions than the second-order perturbation solutions. So, we 
have reason to believe that PAM can indeed give more accurate 
analytical results than the perturbation method. Note that small 
or great parameter supposition is not needed for PAM. This 
is an advantage of PAM. 

The perturbation method seems like a kind of art. Especially 
in the case of singular perturbation problems one must use 
different techniques, for example, the methods of multiple-
scale expansions, the method of matched asymptotic expan­
sions and so on, to solve different problems. Therefore, ex­
periences seem important for the perturbation method. But, 
contrary to perturbation techniques, PAM has the simplicity 
in logic. This is another advantage of PAM. 

The process analysis method is based on the two concepts 
of process and process derivatives. Process is a kind of con­
tinuous mapping which connects the initial solutions with the 
solutions of the original nonlinear problem. But this contin­
uous mapping described by the zero-order process equation is 
generally nonlinear for a nonlinear problem. It is interesting 
and important that the £th-order process equations are linear 
with respect to the &th-order process derivatives. Then, ac­
cording to Taylor's theory, the final solution and initial so­
lution can be connected by the Ath-order process derivatives 
(k = 1, 2, • • •)• That is why the process derivatives should be 
used. 

The process analysis method is also based on suppositions, 
i.e., there should exist zero-order process and &th-order process 
derivatives, and the corresponding Taylor's series should con­
verge to the solution of the original equations. Therefore, PAM 
is also dependent on suppositions, but these suppositions are 
not small-parameter suppositions. Owing to this reason, one 
can use it to solve more nonlinear problems, especially those 
without small or great parameters. 

However, it should be pointed out that Taylor's series has 
generally a. finite radius of convergence. (Only few functions 
have converged Taylor's series with infinite radius of conver­
gence; for example, sin(x), cos(x), and so on.) PAM requires 
the itth-order process derivatives (k = 1, 2,- • •) to exist, and 
to be well behaved and be bounded (i.e., they must not have 
turning points or diverge to infinity inp € [0, 1]), and converge. 
Up to now, it is unknown whether or not the corresponding 
Taylor's series, given by PAM, have always a larger radius of 
convergence than an asymptotic series based on the pertur­
bation method. These are the limitations of PAM. 
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