|
廖世俊1992年获上海交通大学船舶与海洋工程专业博士学位,现任上海交通大学船舶海洋与建筑工程学院讲席教授、海洋工程全国重点实验室主任。
廖世俊长期致力于非线性力学的基础研究。他1992年原创性提出“广义同伦”概念,进而提出解析近似求解强非线性问题的“同伦分析法”(Homotopy Analysis Method,简称HAM),突破了传统方法依赖物理小参数、不能确保级数解收敛等局限性,开辟了强非线性问题解析近似求解的新途径,开拓了非线性力学一个新的研究方向。同伦分析法被Sardanyes等欧洲学者认为是一个“至关重要的里程碑(truly important milestone)”。此外,廖世俊2009年原创性提出求解混沌系统的“洁净数值模拟”(Clean Numerical Simulation, 简称CNS),突破了传统方法被数值噪音严重污染之局限性,为混沌系统和湍流提供了一个可靠的长时间模拟工具。他应用CNS发现著名三体问题二千余个新周期解,将其数量增加了几个量级。美国学者Anandam 评价其在三体问题周期解上取得“巨大进展(tremendous progress)”,美国知名杂志New Scientists曾两次报道其成果。
廖世俊发表二百余篇学术论文,独立撰写三本英文学术专著,论著共被SCI检索他引13926次(2025年初统计),入选2024年全球前0.05%顶尖学者。廖世俊曾获国家自然科学二等奖(独立完成人)、上海市自然科学一等奖(独立完成人)、上海市自然科学牡丹奖、第十五届上海市科技精英,2023年被英国普利茅斯大学授予荣誉博士学位,现任上海市力学学会理事长、流体力学国际顶级期刊Journal of Fluid Mechanics副主编 (Associate Editor) 等。
研究方向
廖世俊长期致力于非线性力学的基础研究。其主要研究方向如下:
-
1992年,廖世俊原创性提出“广义同伦”概念,进而提出解析近似求解强非线性问题的“同伦分析法”(Homotopy Analysis Method,简称HAM),突破了传统方法依赖物理小参数、不能确保级数解收敛等局限性,开辟了强非线性问题解析近似求解的新途径,开拓了非线性力学一个新的研究方向;同伦分析法被Sardanyes等欧洲学者认为是一个“至关重要的里程碑(truly important milestone)”。
-
2009年,廖世俊原创性提出求解混沌系统的“洁净数值模拟”(Clean Numerical Simulation, 简称CNS),突破了传统方法被数值噪音严重污染之局限性,为混沌系统和湍流提供了一个可靠的长时间模拟工具。廖世俊应用CNS发现著名三体问题二千余个新周期解,将其数量增加了几个量级。美国学者Anandam 评价其在三体问题周期解上取得“巨大进展(tremendous progress)”。美国知名杂志New Scientists曾两次报道其成果。
其研究领域涉及非线性力学、湍流、非线性波浪、混沌、机器学习、海洋工程、应用数学等领域。
科研项目
廖世俊教授承担过诸如国家自然科学基金优秀青年基金(A类)、重点项目、面上项目,以及教育部和上海市的多项科研项目。
教学
《随机性和复杂性初探》 (本科生)
《符号计算与强非线性方程》
荣誉和奖励
- 国家自然科学二等奖(2016年,独立完成人)
- 上海市自然科学一等奖(2009年,独立完成人)
- 上海市第七届“自然科学牡丹奖”(2009)
- 第15届“上海市科技精英”(2017年)
- 英国普利茅斯大学荣誉博士(2023年)
学术兼职
廖世俊教授主要学术兼职:
-
上海市力学学会理事长
-
中国力学学会常务理事
-
Journal of Fluid Mechanics副主编 (Associate Editor)
-
Science China – Physics, Mechanics, Astronomy 编委
-
Acta Mechanica Sinica编委
代表性论文和专著
廖世俊发表二百余篇学术论文,独立撰写三本英文学术专著,论著共被SCI检索他引13926次(2025年初统计),入选2024年全球前0.05%顶尖学者。
专著
- S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton, 2003.
- S.J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg & Beijing, 2012.
- S.J. Liao, Clean Numerical Simulation, Taylor & Francis Group/CRC Press, Boca Raton, 2023.
杂志论文
- Shijun Liao, “An approximate solution technique not depending on small parameters: a special example”, International Journal of Nonlinear Mechanics, vol. 30, pp. 371-380 (1995)
- Shijun Liao, “A kind of approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics”, International Journal of Nonlinear Mechanics, vol. 32 (5), pp. 815-822 (1997).
- Shijun Liao, “A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate”, Journal of Fluid Mechanics, vol. 385, pp. 101-128 (1999) (DOI: 10.1017/S0022112099004292).
- Shijun Liao, “On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet”, Journal of Fluid Mechanics, vol. 488, pp. 189-212 (2003) (DOI: 10.1017/S0022112003004865).
- Shijun Liao, “On the homotopy analysis method for nonlinear problems”, Applied Mathematics and Computation, vol. 147, pp. 499-513 (2004) (DOI: 10.1016/S0096-3003(02)00790-7).
- Shijun Liao, “Notes on the homotopy analysis method: some definitions and theorems”, Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 983-997 (2009) (DOI: 10.1016/j.cnsns.2008.04.013).
- S.J. Liao, “On the reliability of computed chaotic solutions of non-linear differential equations”, Tellus-A, vol. 61, pp. 550-564 (2009) (DOI: 10.1111/j.1600-0870.2009.00402.x).
- Shijun Liao, “An optimal homotopy-analysis approach for strongly nonlinear differential equations”, Communications in Nonlinear Science and Numerical Simulation, vol. 15, pp. 2003-2016 (2010) (DOI: 10.1016/j.cnsns.2009.09.002).
- S.J. Liao and P.F. Wang, “On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0,10000]”, Science China – Physics, Mechanics & Astronomy, vol. 57 (2), pp. 330–335 (2014) (DOI: 10.1007/s11433-013-5375-z).
- Shijun Liao, D.L. Xu and M. Stiassnie, “On the steady-state nearly resonant water waves”, Journal of Fluid Mechanics, vol. 794, pp. 175-199 (2016) (DOI: 10.1017/jfm.2016.162).
- X.M. Li and Shijun Liao, “More than six hundred new families of Newtonian periodic planar collisionless three-body orbits”, Science China - Physics Mechanics & Astronomy, Vol. 60, No. 12, 129511 (2017) (DOI: 10.1007/s11433-017-9078-5).
- X.Y. Yang, F. Dias and Shijun Liao, “On the steady-state resonant acoustic gravity wave”, Journal of Fluid Mechanics, vol. 849, pp. 111-135 (2018).
- X.X. Zhong and Shijun Liao, “On the limiting Stokes’ wave of extreme height in arbitrary water depth”, Journal of Fluid Mechanics, vol. 843, pp. 653-679 (2018).
- Shijie Qin and Shijun Liao, “Large-scale influence of numerical noises as artificial stochastic disturbances on a sustained turbulence”, Journal of Fluid Mechanics, vol. 948 (2022) A7 (10.1017/jfm.2022.710).
- Shijun Liao, Xiaoming Li and Yu Yang, “Three-body problem: from Newton to supercomputer plus machine learning”, New Astronomy 96 (2022) 101850 (10.1016/j.newast.2022.101850)。
- Shijun Liao, “Avoiding small denominator problems by means of the homotopy analysis method”, Advances in Applied Mathematics and Mechanics, vol. 15(2), pp. 267-299 (2023) (DOI: 10.4208/aamm.OA-2022-0260)。
- Shijun Liao and S. Qin, “Noise-expansion cascade: an origin of randomness of turbulence”, Journal of Fluid Mechanics (2025), vol. 1009, A2.
- Shijun Liao and S. Qin, “Physical significance of artificial numerical noise of DNS for turbulence”, Journal of Fluid Mechanics (2025), vol. 1008, R2.
|
|